2023 EDITION FREE

DESIGN

B

) ByteByteGo By ByteByteGo.com

Explaining 9 types of API testing 7

How is data sent over the internet? What does that have to do with the OSI model? How does

TCP/IP fit into this? 10
Top 5 common ways to improve AP| performance 11
There are over 1,000 engineering blogs. Here are my top 9 favorites: 15
REST API Authentication Methods 16
Linux Boot Process lllustrated 18
Netflix's Tech Stack 22
What does ACID mean? 26
Oauth 2.0 Explained With Simple Terms 28
The Evolving Landscape of API Protocols in 2023 30
Linux boot Process Explained 32
Explaining 8 Popular Network Protocols in 1 Diagram. 34
Data Pipelines Overview 36
CAP, BASE, SOLID, KISS, What do these acronyms mean? 38
GET, POST, PUT... Common HTTP “verbs” in one figure 40
How Do C++, Java, Python Work? 42
Top 12 Tips for API Security 44
Our recommended materials to crack your next tech interview 45
A handy cheat sheet for the most popular cloud services (2023 edition) 49
Best ways to test system functionality 51
Explaining JSON Web Token (JWT) to a 10 year old Kid 53
How do companies ship code to production? 55
How does Docker Work? Is Docker still relevant? 57
Explaining 8 Popular Network Protocols in 1 Diagram 59
System Design Blueprint: The Ultimate Guide 61
Key Concepts to Understand Database Sharding 63
Top 5 Software Architectural Patterns 67
OAuth 2.0 Flows 69
How did AWS grow from just a few services in 2006 to over 200 fully-featured services? 71
HTTPS, SSL Handshake, and Data Encryption Explained to Kids 75
A nice cheat sheet of different databases in cloud services 77
CI/CD Pipeline Explained in Simple Terms 78
What does API gateway do? 80
The Code Review Pyramid 82

A picture is worth a thousand words: 9 best practices for developing microservices 83

What are the greenest programming languages? 85

An amazing illustration of how to build a resilient three-tier architecture on AWS 87
URL, URI, URN - Do you know the differences? 88
What branching strategies does your team use? 90
Linux file system explained 90
What are the data structures used in daily life? 95
18 Most-used Linux Commands You Should Know 99
Would it be nice if the code we wrote automatically turned into architecture diagrams? 101
Netflix Tech Stack - Part 1 (CI/CD Pipeline) 103
18 Key Design Patterns Every Developer Should Know 105
How many API architecture styles do you know? 107
Visualizing a SQL query 109
What distinguishes MVC, MVP, MVVM, MVVM-C, and VIPER architecture patterns from each

other? 111

Almost every software engineer has used Git before, but only a handful know how it works :)
113

| read something unbelievable today: Levels. fyi scaled to millions of users using Google Sheets

as a backend! 115
Best ways to test system functionality 117
Logging, tracing and metrics are 3 pillars of system observability 119
Internet Traffic Routing Policies 121
Subjects that should be mandatory in schools 123
Do you know all the components of a URL? 124
What are the differences between cookies and sessions? 125
How do DevOps, NoOps change the software development lifecycle (SDLC)? 127
Popular interview guestion: What is the difference between Process and Thread? 129
Top 6 Load Balancing Algorithms 131
Symmetric encryption vs asymmetric encryption 133
How does Redis persist data? 135
IBM MQ -> RabbitMQ -> Kafka ->Pulsar, How do message queue architectures evolve? 137
Top 4 Kubernetes Service Types in one diagram 139
Explaining 5 unique ID generators in distributed systems 141
How Do C++, Java, and Python Function? 143
How will you design the Stack Overflow website? 145
Explain the Top 6 Use Cases of Object Stores 147
AP| Vs SDK! 149

A picture is worth a thousand words: 9 best practices for developing microservices 151

Proxy Vs reverse proxy 152

Git Vs Github 153
Which latency numbers should you know 154
Eight Data Structures That Power Your Databases. Which one should we pick? 156
How Git Commands Work 158
How to store passwords safely in the database and how to validate a password? 160
How does Docker Work? Is Docker still relevant? 164
Docker vs. Kubernetes. Which one should we use? 166
Writing Code that Runs on All Platforms 168
HTTP Status Code You Should Know 170
Docker 101: Streamlining App Deployment 172
Git Merge vs. Rebase vs. Squash Commit 174
Cloud Network Components Cheat Sheet 176
SOAP vs REST vs GraphQL vs RPC 178
10 Key Data Structures We Use Every Day 179
What does a typical microservice architecture look like? 181
My recommended materials for cracking your next technical interview 183
Uber Tech Stack 185
Top 5 Caching Strategies 187
How many message queues do you know? 189
Why is Kafka fast? 190
How slack decides to send a notification 192
Kubernetes Tools Ecosystem 193
Cloud Native Landscape 195
How does VISA work when we swipe a credit card at a merchant’s shop? 196
A simple visual guide to help people understand the key considerations when designing or using
caching systems 198
What tech stack is commonly used for microservices? 199
How do we transform a system to be Cloud Native? 201
Explaining Sessions, Tokens, JWT, SSO, and OAuth in One Diagram 203
Most Used Linux Commands Map 204
What is Event Sourcing? How is it different from normal CRUD design? 205
What is k8s (Kubernetes)? 207
How does Git Work? 209
How does Google Authenticator (or other types of 2-factor authenticators) work? 211

laaS, PaaS, Cloud Native... How do we get here? 214

How does ChatGPT work? 215

Top Hidden Costs of Cloud Providers 217
Algorithms You Should Know Before You Take System Design Interviews 219
Understanding Database Types 221
How does gRPC work? 222
How does a Password Manager such as 1Password or Lastpass work? How does it keep our

passwords safe? 224
Types of Software Engineers and Their Typically Required Skills 226
How does REST API work? 228
Session, cookie, JWT, token, SSO, and OAuth 2.0 - what are they? 229
Linux commands illustrated on one page! 232
The Payments Ecosystem 233
Algorithms You Should Know Before You Take System Design Interviews (updated list 235
How is data transmitted between applications? 236
Cloud Native Anti Patterns 240
Uber Tech Stack - CI/CD 242
How Discord Stores Trillions Of Messages 244
How to diagnose a mysterious process that’s taking too much CPU, memory, 10, etc? 246
How does Chrome work? 247
Differences in Event SOurcing System Design 249
Firewall explained to Kids... and Adults 251
Paradigm Shift: How Developer to Tester Ratio Changed From 1:1 to 100:1 253
Why is PostgreSQL voted as the most loved database by developers? 255
8 Key OOP Concepts Every Developer Should Know 257
Top 6 most commonly used Server Types 259
DevOps vs. SRE vs. Platform Engineering. Do you know the differences? 261
5 important components of Linux 263
How to scale a website to support millions of users? 265
What is FedNow (instant payment) 267
5 ways of Inter-Process Communication 270
What is a webhook? 272
What tools does your team use to ship code to production and ensure code guality? 274
Stack Overflow's Architecture: A Very Interesting Case Study 276
Are you familiar with the Java Collection Framework? 277
Twitter 1.0 Tech Stack 279

Linux file permission illustrated 281

What are the differen tween ta wareh n ta lake? 282

10 principles for building resilient payment systems (by Shopify). 284
Kubernetes Periodic Table 286
Evolution of the Netflix APl Architecture 287
Where do we cache data? 289
Top 7 Most-Used Distributed System Patterns | 291
How much storage could one purchase with the price of a Tesla Model S? 292
How to choose between RPC and RESTful? 293
Netflix Tech Stack - Databases 294
The 10 Algorithms That Dominate Our World 296
What is the difference between “pull” and “push” payments? 298
ChatGPT - timeline 300
Why did Amazon Prime Video monitoring move from serverless to monolithic? How can it save
90% cost? 302
What is the journey of a Slack message? 303
How does GraphQL work in the real world? 305
Important Things About HTTP Headers You May Not Know! 307
Think you know everything about McDonald's? What about its event-driven architecture ? 308
How ChatGPT works technically 310
Choosing the right database is probably the most important technical decision a company will
make. 311
How do you become a full-stack developer? 312
What’s New in GPT-4 314
Backend Burger 315
How do we design effective and safe APIs? 316
Which SQL statements are most commonly used? 317

Two common data processing models: Batch v.s. Stream Processing. What are the differences?
318

Top 10 Architecture Characteristics / Non-Functional Requirements with Cheatsheet 320
Are serverless databases the future? How do serverless databases differ from traditional cloud

databases? 321
Why do we need message brokers? 323
How does Twitter recommend “For You” Timeline in 1.5 seconds? 325
Popular interview question: what happens when you type “ssh hostname”? 327
Discover Amazon's innovative build system - Brazil. 329
Possible Experiment Platform Architecture 331

YouTube handles 500+ hours of video content uploads every minute on average. How does it

manage this? 333

A beginner’s guide to CDN (Content Delivery Network) 335
What are the APl architectural styles? 337
Cloud-native vs. Cloud computing 339
C, C++, Java, Javascript, Typescript, Golang, Rust... 341
The Linux Storage Stack Diagram shows the layout of the the Linux storage stack 343

Breaking down what's going on with the Silicon Valley Bank (SVB) collapse 344

Explaining 9 types of API testing

|9 Types/API Testing

Smoke
Testing

Input Data
EED L

[N
Functional '.‘.' - Rl |

Testing s

Functional —
Specification Application

B nput Data -
AT Input Data (SR

Application

Application

S 4

-
1
. PR Compare i

Integration
Testing

Gool. = ~ Compare I
ooo U

Regression
Testing Functional
Specification

E- - Vjfteter=:.

high loads

Stress —=
Testing o

Test Engine g

Test Engine |

Test Engine 3

Test Engine

Security -
Testing Security Test

Specification

ul

Application

ul

S 0000000000 o e
Testing 258

Application

Unexpected S - ’ i
Data E ;

Application

Fuzz

- Anything breaks
Testing

¢ Smoke Testing

This is done after APl development is complete. Simply validate if the APIs are working and

nothing breaks.

Expected
Result

Expected
Result

?

blog.bytebytego.com

Simply validate
if the APIs
are working

Test against
functional
requirements

Test several
API calls

Changes won’t
break the
existing
behaviors
of APIs

Test for
application’s
capacity by

simulating loads

Deliberately
create high loads
to see if APls
function normally

Test against
all possible
external
threats

Test interactions
between the
Ul and the APIs

Identify

il vulnerabilities by

sending
unexpected data
into the APIs

Functional Testing
This creates a test plan based on the functional requirements and compares the results with
the expected results.

Integration Testing
This test combines several API calls to perform end-to-end tests. The intra-service
communications and data transmissions are tested.

Regression Testing
This test ensures that bug fixes or new features shouldn’t break the existing behaviors of
APIs.

Load Testing
This tests applications’ performance by simulating different loads. Then we can calculate the
capacity of the application.

Stress Testing
We deliberately create high loads to the APIs and test if the APIs are able to function
normally.

Security Testing
This tests the APIs against all possible external threats.

Ul Testing
This tests the Ul interactions with the APIs to make sure the data can be displayed properly.

Fuzz Testing
This injects invalid or unexpected input data into the APl and tries to crash the API. In this
way, it identifies the API vulnerabilities.

Top 5 Kafka use cases

Kafka was originally built for massive log processing. It retains messages until expiration and lets

consumers pull messages at their own pace.

Top 5 Kafka Use Cases

f) ByteByteGo

Log Analysis

Logs
Shopping Cart
>
Order Service

& > [hen]

Payment Service
B > [Aen

f—

-

)

- [".o elastic} - {‘ kibana

::::ﬁe kafka
=

==
(E22a)

Data Streaming in
Recommendations

il

User Click Steam

& klafka]-——‘

User Click Product | Data Scientist
Aggregation Info “‘
82 o |-- -3
é ¥] User R 5
Flink II_JaaIEsaa Relationship | Machine Learning
Models

Services -w
A, Shopping Cart
: ’_ M’ > bt et i RaaTime
rder Service ST :j% kafka }_ = ‘ & - Monitoring
> Rl [~ ~ Flink | >~
H & Metrics ’ ~
System Monitoring ymem Sevice || - ~ &
and Alerting e >]
Alerting |
e Conectors Sinks N
n Py == |
U ElasticSearch 9 elastic || |
® @ ~ 11 Connector \
Transaction log = i redis
______ % kafkaz - - Co?ll.;g?tor @l ,e S %
Source By
Change Data Databases o { caDB } - - @ |
T Repli
Capture et
Do e)
\
E= | Shopa‘}qg Cart ; N e s §
—_——= 7 ~N—— |
=) S 8 katka Fisasin]
& (Payment Service) e e e s T e vl
L VA | et 1+1 ¢
System T ‘
H H 3
- Order Service |
Migration rdr Senice |
S —

Let’s review the popular Kafka use cases.

Log processing and analysis

Data streaming in recommendations
System monitoring and alerting

CDC (Change data capture)

System migration

Over to you: Do you have any other Kafka use cases to share?

How is data sent over the internet? What does that have to do with

the OSI model? How does TCP/IP fit into this?

What is (XN (e [5]] @B teByteGo

 frame control
« sequence control

7 Layers in the OSI model are:

1.

NouhswnN

Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer

Presentation Layer

Application Layer

o destination IP address

o datagram sequence order

ApEIication _ | T ApEIication
ayer | | \ ayer)
ol |l| ° .
NN
5 4 \ !
Presentation \ ! Presentation
\ Layer \ / \ Layer /
Pl || m=). || P G
> Data Data
Session s N Session
\ Layer) ! \ o Layer
) Ry Nl om
) 8\ 2 =
F‘vﬂ gl N rep || HTTR TCPSegment ’ 2 F47ﬂ
E) /7 || header | | header Data = E
Transport | |5| , UDPPacket|'\ || Transport
\ Layer) / O 5 Layer
6 2 =
E N P TP || HTTP s ! E
> 3 Data IP Datagram
Network ; » || header | | header | | header N NETWorK
\ Layer) ‘o 0, \ Layer)
§ \ ! e =
\\ O | o { asde Data | Frame // E.‘ﬁ
Data Llnk ’ hea/der eader | | header header ~\ Dta Lk
\ Layer) Ie 7 N G \ Layer)
I \
/
o N /U0
: 4 1001011110010111 Bit |/ .
Plr_mysmal | PIL1yS|caI
\ ayer) ¢ N R \ ayer)
- g ol?
: ::::;im)ﬁ?\ﬁfgrae;:ress s source |P address "..‘ « source port

« destination port

* sequence number

Top 5 common ways to improve API performance

How to Improve API Performance ?

) ByteByteGo
4 e R e Tea M
-~ | request ! -
— 1 USRI |
m <o on ordinal numbering
;3 S~ e — — - ; of pages
oo pags 1 D Services
. ~_ handles alarge number
page 2 D, Tee—e E[:[_j result of results
Pagination page3 e TTo- Py
send logs to a lock-free
O ring buffer and return
flush to the disk periodically
ASynC higher throughput and lower
Logg i ng latency
store frequently used daya
o in the cache instead of
BE_! database
=y
. query the database when
CaCh i ng there is a cache miss
m reduce the data size to
= = — “|Services speed up the download
ﬁ]‘ e e — — —-_— and upload
Payload %I:l
Compression & compress o
P payload respones
- opening and closing DB
D=' x connections add significant
O O -0 overhead
D B -| o O o a connection pool maintains
H connection a number of open
CO nPnecltlon E‘ - — pool connections for applications
to reuse
N 00 J

Result Pagination:

This method is used to optimize large result sets by streaming them back to the client,
enhancing service responsiveness and user experience.

Asynchronous Logging:

This approach involves sending logs to a lock-free buffer and returning immediately, rather than
dealing with the disk on every call. Logs are periodically flushed to the disk, significantly

reducing /O overhead.

Data Caching:

Frequently accessed data can be stored in a cache to speed up retrieval. Clients check the cache
before querying the database, with data storage solutions like Redis offering faster access due
to in-memory storage.

Payload Compression:
To reduce data transmission time, requests and responses can be compressed (e.g., using gzip),
making the upload and download processes quicker.

Connection Pooling:

This technique involves using a pool of open connections to manage database interaction,
which reduces the overhead associated with opening and closing connections each time data
needs to be loaded. The pool manages the lifecycle of connections for efficient resource use.

Over to you: What other ways do you use to improve API performance?

Cl/CD Simplified Visual Guide

Whether you're a developer, a DevOps specialist, a tester, or involved in any modern IT role,
CI/CD pipelines have become an integral part of the software development process.

CL/CO WORKELOW o
Simpli€ied Visual Guide blogbytebytego.com

WORKING ON

O MY FEATURE \\w\e (e,s -
" brancH ““’ SR \“‘5
g mekov“"
() COBEIS
é/ LD READY B Covﬁ’mUoUQ In‘k’ecya‘hon
time to push it fo) Apolication Build 1
Git! L g Fr%Pm!CSqo&ize élode ‘
RECEIVED /v ’ ? g
s Checkln forcode
CODE G

g | & O ety ;
Sendmg it to Jenkins Imha‘rlng the bml.d é b Runnmg unit tests fo J

for the build process... ensure every1‘h|n9 S 3

_ worklng
RECEIVED /V ’ ’ =
\(\“ i

Sending it to Jenkms £Looks 9°°

AGAIN for the build this ’nn\\j-)
REVIEW & APPROVE /W'I CoM‘mUou% I.M‘eﬁraho\n
) Rea.dy +o rhefgé!' T o @ :

Process Pull Request i

T2 HERGED TO MAIN Z @ @ E’ﬂa l

Let's build and test " f Code Unit Integration Securl‘ry‘
, Build AHOLYS'S Tests Tests Scanning .

N7 IMAGEISREADY) / Pushing it fo the

Docker registry

1
MAIN =
BRANCH Continuous : # /'ﬁ
Degloyment 1
. TIME TO DEPLOY K8S CLUSTER

Deployment
Successful !!

.

Continuous Integration (Cl) is a practice where code changes are frequently combined into a
shared repository. This process includes automatic checks to ensure the new code works well

with the existing code.

Continuous Deployment (CD) takes care of automatically putting these code changes into
real-world use. It makes sure that the process of moving new code to production is smooth and
reliable.

This visual guide is designed to help you grasp and enhance your methods for creating and
delivering software more effectively.

Over to you: Which tools or strategies do you find most effective in implementing CI/CD in your
projects?

There are over 1,000 engineering blogs. Here are my top 9 favorites:

I 9 of My Favorite Eng Blogs

N

Netflix TechBlog Uber Blog Cloudflare Blog

N n O

Engineering at Meta LinkedIn Engineering Discord Blog

&

i
sRARER .
fhaniiy

AWS Architecture Slack Engineering Stripe Blog

- Netflix TechBlog

- Uber Blog

- Cloudflare Blog

- Engineering at Meta
- LinkedIn Engineering
- Discord Blog

- AWS Architecture

- Slack Engineering

- Stripe Blog

Over to you - What are some of your favorite engineering blogs?

REST API Authentication Methods

Authentication in REST APIs acts as the crucial gateway, ensuring that solely authorized users or

applications gain access to the API's resources.

) ByteByteGo

Basic
Authentication

g
)

Client

()

Sends the
credentials in
plaintext, @D

environments

a8 Good choice
Creates || Rili{single-page]
@ token application or
Sends Auth request)
55 | 2
Token
Authentication || Client P 03- | Server
 SEGER R Ny
_g) - futhorzaton request__ ;
<_ o ‘_A_utnoﬂz_ah_on_g_ra’[ﬁ_ _ _a_ User Ideal for apps
————| needing(EZD
L -
_ B_ _ _ Authorization grant > - Google
Aut Facebook
Emmmmmmmoan===== - | . acebook,
Access token _ﬂ Twitter or any
B - asssaer T L
OAuth | e " __ Q- | Resource
q : < Returns Resource Serv_er
Authentication S%\r\léllce
T R (e TN
n Create key f
_______ Good choice
Creates forGRED
Store ke (3%
-Tmo2 B 7 CEEEDor
Stores D’ for
key =
API Ke with key “ Resource
y : APl |- :
Authentication || Client Server Authorized

Some popular authentication methods for REST APIs include:

1. Basic Authentication:

Involves sending a username and password with each request, but can be less secure without

encryption.

When to use:
Suitable for simple applications where security and encryption aren’t the primary concern or
when used over secured connections.

2. Token Authentication:
Uses generated tokens, like JSON Web Tokens (JWT), exchanged between client and server,
offering enhanced security without sending login credentials with each request.

When to use:
Ideal for more secure and scalable systems, especially when avoiding sending login credentials
with each request is a priority.

3. OAuth Authentication:
Enables third-party limited access to user resources without revealing credentials by issuing
access tokens after user authentication.

When to use:
Ideal for scenarios requiring controlled access to user resources by third-party applications or
services.

4. APl Key Authentication:
Assigns unique keys to users or applications, sent in headers or parameters; while simple, it
might lack the security features of token-based or OAuth methods.

When to use:
Convenient for straightforward access control in less sensitive environments or for granting
access to certain functionalities without the need for user-specific permissions.

Over to you:
Which REST API authentication method do you find most effective in ensuring both security and
usability for your applications?

Linux Boot Process lllustrated
We've made a video (YouTube Link at the end).

The diagram below shows the steps.

LinuxBoot Process Explained
§) ByteByteGo

Bes

Power On BIOS/UEFI Detect Devices

P — 1

I - load from non- :
9
I

I volatile memory
v

| -run POST !
Choose a Boot

B

O
 GRUB |auy

Boot
Loader

Execute systemd
first process in
userspace @2 @ — - - - ——————--- -

Device

m
x
@
Q
c
—
®
=
®
=
=)
1,

</>

Run .target Files Run Startup Scripts Users can
login now

- e —

Ql/default.target . o /systemd-logind 1

: [
s I
bmulti—user.target | letc/profile |
P X L
- \ ~_ | :
' |

. \ ~/.bashrc
Basic.target C/ getty.target L

ssh.service

Step 1 - When we turn on the power, BIOS (Basic Input/Output System) or UEFI (Unified
Extensible Firmware Interface) firmware is loaded from non-volatile memory, and executes
POST (Power On Self Test).

Step 2 - BIOS/UEFI detects the devices connected to the system, including CPU, RAM, and
storage.

Step 3 - Choose a booting device to boot the OS from. This can be the hard drive, the network
server, or CD ROM.

Step 4 - BIOS/UEFI runs the boot loader (GRUB), which provides a menu to choose the OS or the
kernel functions.

Step 5 - After the kernel is ready, we now switch to the user space. The kernel starts up systemd
as the first user-space process, which manages the processes and services, probes all remaining

hardware, mounts filesystems, and runs a desktop environment.

Step 6 - systemd activates the default. target unit by default when the system boots. Other
analysis units are executed as well.

Step 7 - The system runs a set of startup scripts and configures the environment.
Step 8 - The users are presented with a login window. The system is now ready.

Watch and subscribe here: h ://Inkd.in/ezkZb5W

https://lnkd.in/ezkZb5Wq

How do SQL Joins Work?

The diagram below shows how 4 types of SQL joins work in detail.

Top 4 Types &2 [HENED

) ByteByteGo
' ™
User Order \ 0=
O—
Table O—
i i ittt ————
| |User ID | User Name User ID | Order ID i | |User ID |User Name User ID | Order ID i
i 123 Bob 123 333 i i 123 Bob 123 333 i
I 124 Alice 123 222]) 124 Alice 124 111 !
i 125 Carrie 126 111 1] 125 Carrie 126 666 i
i T 1 1 i T ¥ !
I 1 I 1
f | | i ! | SELECT* f |
i SELECT*]]]
\ i \ FROM USER_TABLE a /
LN et e ||\ ETonowenes S
} \ ON a.USER_ID = b.UgER_ID / : } N N ON a.USER_ID = b.USER_ID P / :
| \ / | i A A i
i A A7 i i User ID | User Name | Order ID i
! User ID | User Name | Order ID ! ! 123 Bob 333 !
i 123 Bob 333 1] 124 Alice 111 I
| 123 Bob 222 . | 125 Carrie NULL .
i i
\ .
-
User
Table
i User ID |User Name User ID | Order ID | i User ID |User Name User ID | Order ID |
v 1238 Bob 123 333 i o[123 Bob 123 333 i
I 124 Alice 124 111] | 124 Alice 124 111 |
3 125 Carrie 126 666] i 125 Carrie 126 666]
I T T ! { I I !
I | . ! 1 ! \ SELECT*] i
1 SELECT 1 1 1
i \ . ’ i \ FROM USER_TABLE a
| \ ;Témlj%?:gég;: 'TABI_E b , E i \ FULL OUTER JOIN ORDER_TABLE b ,f i
} \ ONa.USER ID=b UgER D Vi 1 : N ONa.USER_ID =b.USER_ID - 1
i ~a =) A] | A & !
3 User ID | User Name | Order ID | : E SssibiUsenNameliQrderlD :
! i i 123 Bob 333 i
| 123 Bob 333 1 ! - 1
[- i I 124 Alice 111 i
| 124 Alice 111] i :]
1 126 NULL 66 i i 125 Carrie NULL i
i i : 126 NULL 666 |
o _ T W,

¢ INNERJOIN
Returns matching rows in both tables.

¢ LEFTJOIN

Returns all records from the left table, and the matching records from the right table.

RIGHT JOIN
Returns all records from the right table, and the matching records from the left table.

FULL OUTER JOIN
Returns all records where there is a match in either the left or right table.

Netflix's Tech Stack

This post is based on research from many Netflix engineering blogs and open-source projects. If
you come across any inaccuracies, please feel free to inform us.

Tech Stack

<)
WY
Higfed
> N. Chaos
JIRA Confluence Jenkins Spinnaker N.Atlas Monkey Grad

YateYa e ey ¥ Y Y Y Y YY Y Y YaYaTalala'
A A A A A AAAAAALALAhDbbA

Backend

Services

5 @Spmq

: Datab
Streaming e

H e
——— — H G

SQAL. cassandra

L ! :

A\ /5 ! - .
.Y. l (J i LAY/ CockroachDB i
H i

" ! |

i i

!

Open AWS AWS

Connect CloudFront $3
@ ByteByteGo @M AWS Elastic
n-'% Transcoder
Data Storage ‘. Apache -5 4 g
> Iceberg -

———
Redshift

I Messaging / Streaming

Data Processing APACHE

T I A Flink Spor’(

tableau

[
¥ 0110100110100110100110100110100101

Mobile and web: Netflix has adopted Swift and Kotlin to build native mobile apps. For its web
application, it uses React.

Frontend/server communication: GraphQL.

Backend services: Netflix relies on ZUUL, Eureka, the Spring Boot framework, and other
technologies.

Databases: Netflix utilizes EV cache, Cassandra, CockroachDB, and other databases.

Messaging/streaming: Netflix employs Apache Kafka and Fink for messaging and streaming
purposes.

Video storage: Netflix uses S3 and Open Connect for video storage.

Data processing: Netflix utilizes Flink and Spark for data processing, which is then visualized
using Tableau. Redshift is used for processing structured data warehouse information.

Cl/CD: Netflix employs various tools such as JIRA, Confluence, PagerDuty, Jenkins, Gradle, Chaos
Monkey, Spinnaker, Altas, and more for CI/CD processes.

Top Architectural Styles

Software Architecture Styles

CQRS Architecture it Layar
separates read and write
/1 operations for a data store.
/ It enables independent
scaling of read and write

workloads and optimizes
! them separately.

Database Layer

Orchestration Architecture [1 Layered (n-tier) Architecture
a central coordincitor (often - separates software into logical layers
called an orchestrator) that

directs the interaction between
services. The orchestrator is
responsible for managing the
control flow and data flow
between services.

Microkernel Architecture
separates a minimal functional
core from extended functionality
and customer-specific parts.

N e ==-Jl-=2
. ° . - B (=R - =
‘ et = K=

MVP Architecture 4—==<

derivative of the Model-View-
Controller (MVC) pattern, which
aims to separate the concerns of
data management, user
interface, and control flow.

Microservice Architecture
This architecture designs a
software application as a suite
of independently deployable,
small, modular services.

Event-Driven Architecture

promotes the production, ’/ .
detection, consumption of, and Space-Based Architecture
reaction to events. This resolves the issues of data

BDD Architacture consistency, reliable

Evant Consumers focuses on the domain logic and performance, and scalability for

/m complexity rather than the large-scale distributed systems
technology used.

Message ok - o

™| . <

Processing Unit

ByteByteGo

In software development, architecture plays a crucial role in shaping the structure and behavior
of software systems. It provides a blueprint for system design, detailing how components
interact with each other to deliver specific functionality. They also offer solutions to common
problems, saving time and effort and leading to more robust and maintainable systems.

However, with the vast array of architectural styles and patterns available, it can take time to
discern which approach best suits a particular project or system. Aims to shed light on these

concepts, helping you make informed decisions in your architectural endeavors.

To help you navigate the vast landscape of architectural styles and patterns, there is a cheat
sheet that encapsulates all. This cheat sheet is a handy reference guide that you can use to
quickly recall the main characteristics of each architectural style and pattern.

What does ACID mean?

The diagram below explains what ACID means in the context of a database transaction.

What does/ACID Mean?

Atomicity

|

| &
S commit all

~ " “ornothing ~ *

o 4 0B

Transaction :

) ByteByteGo

Consistency

i [|
|
| |
Transelictions |
|

v

Concurrent transactions are i
isolated from each other

! write 1 i
| write2 . [~ o
| Transaction A “ RN !
T isolated __v !
wite3 | | -7 |

write 4
Transaction B i

Data is persisted after transaction is |
committed even in a system failure

| transaction }

i 1.cor:nmit i
i v |
| 58} |
e !
2.replicated 2 replicated ;
| replica a replica b ‘

¢ Atomicity
The writes in a transaction are executed all at once and cannot be broken into smaller
parts. If there are faults when executing the transaction, the writes in the transaction
are rolled back.

So atomicity means “all or nothing”.

Consistency

Unlike “consistency” in CAP theorem, which means every read receives the most recent
write or an error, here consistency means preserving database invariants. Any data
written by a transaction must be valid according to all defined rules and maintain the
database in a good state.

Isolation

When there are concurrent writes from two different transactions, the two transactions
are isolated from each other. The most strict isolation is “serializability”, where each
transaction acts like it is the only transaction running in the database. However, this is
hard to implement in reality, so we often adopt a loser isolation level.

Durability
Data is persisted after a transaction is committed even in a system failure. In a
distributed system, this means the data is replicated to some other nodes.

Oauth 2.0 Explained With Simple Terms

(What is (0Auth ?

% Protocol For sharing user Authotization
ocross systems.

oy ofF efel
@ €
s}

(Sewver
i L i by Provider which
Entity Whos Sexvice, User wants vider
authorizabion Flows Jo aaess and Complele W'io::;; mﬁ
ocross dhe Systems. Auhorization acrss, c(-:: e -
Plso :ﬁmu:n ag esouree Mwmhu'; ls ¢ e

Sevuices.

10 =T | 0E=D
e 5 ByteByteGo

() 2 protocal upgraded for
20 brouser
non. er
w-'ng-ws hw”
obile App

0@’ Obe () ()
Auth: LU A LAuntizo:Hon Code
> = _Flow

—_—

Canyou \og'mhoxdp ¢ —©O i (Server
2 authdrize Jourself ? f—s (o=
a v T validaled 3@ G o= o
Adtorizatign 10X
Hey Sexver,

i OAuth /L0 o | Get fmytata [l
crendiatials € 1 n and dnic is his | el |
logme in 4 Quthorization token Can you authenheate
Share my Tdenkity l i ®| '
with Server s — o ; ‘

lu-yep T have been edireded. by b Server, can you authenhicate l
@ me ond gueme (Hikiton Gl |
|] Vou are Punenticated |
RIS s Your (it Gl
| T dent ouPanticatin: |]

) e s

T}JPQS OAIMNM 2ation code : Ilftt: “g_:»-—«-_:m_m_z_ :

7 ! T

DAuth © Impiicit Code | | = e,
© Resourse owner Rissword. |

Hereis your dato. ! | |

OAuth 2.0 is a powerful and secure framework that allows different applications to securely
interact with each other on behalf of users without sharing sensitive credentials.

The entities involved in OAuth are the User, the Server, and the Identity Provider (IDP).

What Can an OAuth Token Do?

When you use OAuth, you get an OAuth token that represents your identity and permissions.
This token can do a few important things:

Single Sign-On (SSO): With an OAuth token, you can log into multiple services or apps using just
one login, making life easier and safer.

Authorization Across Systems: The OAuth token allows you to share your authorization or access
rights across various systems, so you don't have to log in separately everywhere.

Accessing User Profile: Apps with an OAuth token can access certain parts of your user profile
that you allow, but they won't see everything.

Remember, OAuth 2.0 is all about keeping you and your data safe while making your online
experiences seamless and hassle-free across different applications and services.

Over to you: Imagine you have a magical power to grant one wish to OAuth 2.0. What would
that be? Maybe your suggestions actually lead to OAuth 3.

The Evolving Landscape of API Protocols in 2023
This is a brief summary of the blog post | wrote for Postman.

In this blog post, | cover the six most popular API protocols: REST, Webhooks, GraphQL, SOAP,

WebSocket, and gRPC. The discussion includes the benefits and challenges associated with each
protocol.

API Protocols

©® Webhooks
© REST A webhook is a mechanism for one Y Graph QL
. . system to notify another system in
REST is an architectural style for real-time via HTTP callbacks when a GraphQL is a query language for
designi d applicati specific event ocours APIs that allows clients to request
using stateless communication and only the data they need 2o
standard HTTP methods %
Rest APl
Cloud
Data
Clients
Reglster . P— — {api}
~a W - Webhooks i Mmb' d‘.‘:;p’ : @ ’
to subscribe to - Rest APl
\ Wi ? Notifications }-\ X GraphGL
= . U @ 3
S Your Webhook A Server
. App API Y
. £ Backend
EDA oo
\
Event—Driven Architecture (EDA} h
is a trending software ® SOAP

architecture pattemn nowadays SOAP is a protocol for exchanging

structured information using XML
Consumer A

Producer **-H = {
=

EDI

EDI (Electronic Data Intercha—
nge) is a set of standards for
exchanging structured business
data between organizations
electronically without human

TECHNO-
LOGIES

intervention
_ WebSockets provide a full-duplex
= communication channel over a
E Furchase Grder g single, long-lived connection,
= allowing for real-time data
BUYER'S. Invoice SUPPLIER" S
INTERNAL SYSTEM INTERNAL SYSTEM ’l _________
© SSE o
s
SSE (Server-Sent Events} is a ”
simple and efficient standard for

server—push notifications over an © AM QP
connaction AMQP is an open-standard

| cannection ——— protacol for message— MQTT is a lightweight publish— 9RPC is a high-performance,
oriented middleware, bscribe ging protocol open-source framework for
Eﬁ:i facl'l?atngm_age routing, designed for low-bandwidth, high- RFCS using Protacol Buffers
e Event | Queuing, & very latency, or unreliable networks -
Evant | . gRPC Stub
f+—— Close Conversation —| r
RPC Si Clbm
Producer D
B C++ SHVIGB
“/
: =
JavaClient

) ByteByteGo + epmsmn

You can read the full blog post here: https://blog.postman.com/api-protocols-in-2023

https://blog.postman.com/api-protocols-in-2023/
https://lnkd.in/exGN-nmy

Linux boot Process Explained

Almost every software engineer has used Linux before, but only a handful know how its Boot
Process works :) Let's dive in.

The diagram below shows the steps.

Linux Boot Process Explained

) ByteByteGo
g

[RS

Power On

Detect Devices

I' - load from non- !
I volatile memory G’]
'L - run POST ')

Choose a Boot

Execute systemd |
Device

first process in
user space

\ 7, \ o/
Basic.target . getty.target C
/

ezl
Run .target Files Run Startup Scripts Users can
I _ login now
{\I/default.target : > /systemd-logind :
A multi-user.target : o letclprofile :
AN T i |
|

ssh.service

Step 1 - When we turn on the power, BIOS (Basic Input/Output System) or UEFI (Unified
Extensible Firmware Interface) firmware is loaded from non-volatile memory, and executes
POST (Power On Self Test).

Step 2 - BIOS/UEFI detects the devices connected to the system, including CPU, RAM, and
storage.

Step 3 - Choose a booting device to boot the OS from. This can be the hard drive, the network
server, or CD ROM.

Step 4 - BIOS/UEFI runs the boot loader (GRUB), which provides a menu to choose the OS or the
kernel functions.

Step 5 - After the kernel is ready, we now switch to the user space. The kernel starts up systemd
as the first user-space process, which manages the processes and services, probes all remaining

hardware, mounts filesystems, and runs a desktop environment.

Step 6 - systemd activates the default. target unit by default when the system boots. Other
analysis units are executed as well.

Step 7 - The system runs a set of startup scripts and configure the environment.

Step 8 - The users are presented with a login window. The system is now ready.

Explaining 8 Popular Network Protocols in 1 Diagram.

You can find the link to watch a detailed video explanation at the end of the post.

8 Popular (I Protocols

@ blog.bytebytego.com

—-— . <_ ________

wrre 47 HTIPREQ _ _y jmms
s o _ _ HTTP RESP TS
————————— Web Browsing

- ¢
— __ _UDP Connection _ 3 4
SE I -

_ ______ loT Virtual Reality

(r7) € — —TCP Connection— = -
¢(— — —publickey g@— - [II:] =
HTTPS E_:D session key 5 _" Esy

€ - Web Browsing

WebSocket (771) < '

. Real-Time Data
Crmmy ¢ Live Chat “Frangmission
— SYN
————————— - (T
| (IO S |
e) T smess ™M
— (T ~—
ey | _ _ _ ACK_ _ - Web Browsing Email Protocols
— 0
€ — — —REQUEST— — — =
s o]
UDP (r?/l) — — — RESPONSE— — - g
(TS
Gaad_T) I Video Conferencing
7w o
SMTP =

sender SMTP Server receiver Sending/Receiving Emails

£ v

Control Channel

frp () © 2 Zoatacname_
=

Network protocols are standard methods of transferring data between two computers in a
network.

1. HTTP (HyperText Transfer Protocol)
HTTP is a protocol for fetching resources such as HTML documents. It is the foundation of any
data exchange on the Web and it is a client-server protocol.

2. HTTP/3
HTTP/3 is the next major revision of the HTTP. It runs on QUIC, a new transport protocol
designed for mobile-heavy internet usage. It relies on UDP instead of TCP, which enables faster

web page responsiveness. VR applications demand more bandwidth to render intricate details
of a virtual scene and will likely benefit from migrating to HTTP/3 powered by QUIC.

3. HTTPS (HyperText Transfer Protocol Secure)
HTTPS extends HTTP and uses encryption for secure communications.

4. WebSocket

WebSocket is a protocol that provides full-duplex communications over TCP. Clients establish
WebSockets to receive real-time updates from the back-end services. Unlike REST, which always
“pulls” data, WebSocket enables data to be “pushed”. Applications, like online gaming, stock
trading, and messaging apps leverage WebSocket for real-time communication.

5. TCP (Transmission Control Protocol)
TCP is designed to send packets across the internet and ensure the successful delivery of data
and messages over networks. Many application-layer protocols are built on top of TCP.

6. UDP (User Datagram Protocol)

UDP sends packets directly to a target computer, without establishing a connection first. UDP is
commonly used in time-sensitive communications where occasionally dropping packets is better
than waiting. Voice and video traffic are often sent using this protocol.

7. SMTP (Simple Mail Transfer Protocol)
SMTP is a standard protocol to transfer electronic mail from one user to another.

8. FTP (File Transfer Protocol)
FTP is used to transfer computer files between client and server. It has separate connections for
the control channel and data channel.

Data Pipelines Overview

Data pipelines are a fundamental component of managing and processing data efficiently within
modern systems. These pipelines typically encompass 5 predominant phases: Collect, Ingest,
Store, Compute, and Consume.

Data Pipeline Overview

) ByteByteGo
Data Stores Data Streams Applications
ooo
&g () 550

Data Event ~
Load Queue ‘

Data Data Data %
Lake Warehouse Lakehouse %

Batch Stream &
Processing a B Processang

Data Business Self-Service
Science Intelligence Analytics Services

OO0,

O= OX
(20X

Aol O

= G €x ¢x €=x

1. Collect:
Data is acquired from data stores, data streams, and applications, sourced remotely from
devices, applications, or business systems.

2. Ingest:

During the ingestion process, data is loaded into systems and organized within event queues.

3. Store:
Post ingestion, organized data is stored in data warehouses, data lakes, and data lakehouses,
along with various systems like databases, ensuring post-ingestion storage.

4. Compute:

Data undergoes aggregation, cleansing, and manipulation to conform to company standards,
including tasks such as format conversion, data compression, and partitioning. This phase
employs both batch and stream processing techniques.

5. Consume:

Processed data is made available for consumption through analytics and visualization tools,
operational data stores, decision engines, user-facing applications, dashboards, data science,
machine learning services, business intelligence, and self-service analytics.

The efficiency and effectiveness of each phase contribute to the overall success of data-driven
operations within an organization.

Over to you: What's your story with data-driven pipelines? How have they influenced your data
management game?

CAP, BASE, SOLID, KISS, What do these acronyms mean?

The diagram below explains the common acronyms in system designs.

System Design Acronyms

) ByteByteGo
4 N\ N\
C Consistency Consistency
CAP A Availability CA - CP
P Partition Tolerance Availabiiy. Loartition
L y /
4 N N
BA Basically Available ACID BASE
BASE @S Soft State RDBMS golden - Used in NoSQL
standard - States will be
Eventual Consistency consistent
Y) over time E
4 N N N
S Single Responsibility O1--0 Single ,x’ Open Close
O Open Close Principle E :E Responsibility —" s) Principle
SOLID | L Liskov Substitution A 108
| Interface Segregation A= | i !
S) D Dependency Invers Dependency Inversion Interface A |« -
e B
K Keep
It o
KISS .
S Simple,
S Stupid USERS NEEDS STAKEHOLDERS
\ / IDEAS J
¢ CAP

CAP theorem states that any distributed data store can only provide two of the following
three guarantees:
1. Consistency - Every read receives the most recent write or an error.
2. Availability - Every request receives a response.
3. Partition tolerance - The system continues to operate in network faults.

However, this theorem was criticized for being too narrow for distributed systems, and
we shouldn’t use it to categorize the databases. Network faults are guaranteed to
happen in distributed systems, and we must deal with this in any distributed systems.

You can read more on this in “Please stop calling databases CP or AP” by Martin
Kleppmann.

BASE

The ACID (Atomicity-Consistency-Isolation-Durability) model used in relational databases
is too strict for NoSQL databases. The BASE principle offers more flexibility, choosing
availability over consistency. It states that the states will eventually be consistent.

SOLID
SOLID principle is quite famous in OOP. There are 5 components to it.

1. SRP (Single Responsibility Principle)
Each unit of code should have one responsibility.

2. OCP (Open Close Principle)
Units of code should be open for extension but closed for modification.

3. LSP (Liskov Substitution Principle)
A subclass should be able to be substituted by its base class.

4. ISP (Interface Segregation Principle)
Expose multiple interfaces with specific responsibilities.

5. DIP (Dependency Inversion Principle)
Use abstractions to decouple dependencies in the system.

KISS
"Keep it simple, stupid!" is a design principle first noted by the U.S. Navy in 1960. It

states that most systems work best if they are kept simple.

Over to you: Have you invented any acronyms in your career?

GET, POST, PUT... Common HTTP “verbs” in one figure

Top 9 HTTP Request Methods

) ByteByteGo
C GeT)@l [pur 4] (posT &
GET N1/products/iphone (PUT /vilusers/123) POST /v1/users

Response

Request Body Request Body
e

Retrieve a single item ; .
or a list of items Update an item Create an item

DELETE _ PATCH }&X(HEAD 32,

(DELETE /v1/users/123) | | (PATCH /v1/users/123) | [(HEAD /v1/products/iphone

| Response |

Response Request Body

Response

. : . . Identical to GET but no
Delete an item Partially modify an item message body in the response
N

'CONNECT |2 [OPTIONS J$}4. [TRACE 9.0,
(CONNECT xxx.com:80) | | (OPTIONS /v1/users (TRACE findexhtml)

Reques!

Response

Response

; Perform a message loop-
Create a two-way connection Return a list of supported back test,providing a
with a proxy server HTTP methods debugging mechanism

1. HTTP GET
This retrieves a resource from the server. It is idempotent. Multiple identical requests

return the same result.

2. HTTPPUT
This updates or Creates a resource. It is idempotent. Multiple identical requests will

update the same resource.

3. HTTP POST
This is used to create new resources. It is not idempotent, making two identical POST
will duplicate the resource creation.

4. HTTP DELETE
This is used to delete a resource. It is idempotent. Multiple identical requests will delete
the same resource.

5. HTTP PATCH
The PATCH method applies partial modifications to a resource.

6. HTTP HEAD
The HEAD method asks for a response identical to a GET request but without the
response body.

7. HTTP CONNECT
The CONNECT method establishes a tunnel to the server identified by the target
resource.

8. HTTP OPTIONS
This describes the communication options for the target resource.

9. HTTP TRACE
This performs a message loop-back test along the path to the target resource.

Over to you: What other HTTP verbs have you used?

How Do C++, Java, Python Work?

The diagram shows how the compilation and execution work.

Ii-'ril@w do C++, Java, Pytnon Work 9

@ blog.bytebytego.com

0Ca| [£m @) [* Taw)

JavaScript

—

)

aEi=l=
1 -
: .]
: 8 Code 1 s Cod '
ource .
. “ ' ource Lode : Source Code
n '] .
. _bﬂ e 101010i| .
. == L11OFH o= S .
' ; :
' Compiler - Compiler ' 7
1
: : . B
: L= L, —
LI :.-- =P <l>
Ready to Use!
Machine Code Bytecode y
AN A\
s N\
e
n
. -. ; Bytec°de m- o
Virtual Machine "'_° Source Code

Machine Code

1011
i M ,.....4.-
> °° : B,
SIYSHIEAN JIT Compiler | | Interpreter i+ Interpreter

oo Just in Ti
: o . (Just in Time) _
' perating T = .

' System v 1 j ' [Runtime]
' —|v =-}

. 1

! °0 .

' . T ySTEM - U

: b Operating L

== Machine Code - System v

Operating
Hardware Systl.em
< -
Hardware Hardware
- I L)1

Compiled languages are compiled into machine code by the compiler. The machine code can
later be executed directly by the CPU. Examples: C, C++, Go.

A bytecode language like Java, compiles the source code into bytecode first, then the JVM
executes the program. Sometimes JIT (Just-In-Time) compiler compiles the source code into

machine code to speed up the execution. Examples: Java, C#

Interpreted languages are not compiled. They are interpreted by the interpreter during
runtime. Examples: Python, Javascript, Ruby

Compiled languages in general run faster than interpreted languages.

Over to you: which type of language do you prefer?

Top 12 Tips for API Security

12 Tips for (SIEEETI

ohaisre Y Cannot modify

~| Authentlcatlon WCan view
Server
ﬁs
e \

) ByteByteGo
_Use OAuth2 | ,_UEE_Y_\(??A}!!!‘_D_,
i |- LU & =
¢ 9 éuthorization Clent/ Platiorm i
" erver Googe :m
Q:- <~ e Resource o e
o 9Serverc gle ll
K auman\ l:atm
Use Leveled Authorlzatlon } ' Rate L|m|t|ng
i APIKeys | || o [e

AR/ GET/vi/users /123

W GET/users/ 123

Design allowlist rules
based on IP,user etc

Check OWASP API'

1
1
1

Security Risks |

OWASP

Open Web Application
Security Project

" Use API Gateway | _Error Handing
descriptive,helpful
@ Q: V% error nqessageg

A/ be emphathetic

API Gateway x internal stack trace

€ incorrect error codes

o«

Input Validation_
&8

Validator

Services API Gateway
- Use HTTPS
- Use OAuth2
- Use WebAuthn
- Use Leveled API Keys
- Authorization

- Rate Limiting

- APl Versioning

- Whitelisting

- Check OWASP API Security Risks
- Use API Gateway

- Error Handling

- Input Validation

Our recommended materials to crack your next tech interview

You can find the link to watch a detailed video explanation at the end of the post.

My Recommended & blogbyrebyregocom
Tech Intsrvisws

SYSTEM

SYSTEM
DESIGN
INTERVIEW PESIEN|

L 11]

Leetcode Neetcode Cracking the System Design Grokking the Designing Data
coding interview Interview Books system design Intensive
interview by Application
Design Guru

; BEHAVIORAL 00D
INTERVIEW INTERVIEW

\ oV o
<f>
A -
Tech Interview A Life Engineered STAR Method Interviewr- Educative Head First

Handbook (YT) eady Design
Patterns Book

..
Q@\\\ in M 7§

Interviewing.io Pramp Meetapro LinkedIn Monster Indeed

Coding
- Leetcode
- Cracking the coding interview book
- Neetcode

System Design Interview
- System Design Interview book 1, 2 by Alex Xu
- Grokking the system design by Design Guru
- Design Data-intensive Application book

Behavioral interview
- Tech Interview Handbook (Github repo)
- Alife Engineered (YT)
- STAR method (general method)

OOD Interview
- Interviewready
- 00D by educative
- Head First Design Patterns Book

Mock interviews
- Interviewingio
- Pramp
- Meetapro

Apply for Jobs
- Linkedin
- Monster
- Indeed

Over to you: What is your favorite interview prep material?

How To Release A Mobile App

The mobile app release process differs from conventional methods. This illustration simplifies
the journey to help you understand.

How To Release A Mobile APP) blog.bytebytego.com

ios _ Android
&, 8 Create @ Create
04] |-t ———— b ——— -b B> Google Play Console
——— Developers App Store Developers Developer
Connect . Account
. . ’
Registration & /* V==
Android Studio
Development Development | Development
A
T L . Create Release <t+-A
nEN m | —D Compile Binary Run Unit Tests Candidate (RC) Build 4__ |
Build & Test ! | | | i
1 7 ; | A8 « !
ﬁ ﬁ : I % \v4 Upload RC Upload RC 17 Bug) | :
| / !
U U : : Bug\ Dogfooding Beta Testing Regression Testing |, : :
QA t | T] : :
- | : Reject $ Final Build Final Build 6 Reject | |
(. P!
! L _ _| sStakeholders Compliance Security e o | :
I
Approvals | 7] :
: ﬂy Prepare Release Prepare Release ‘|7 :
I
I Metadata Screenshots Release Notes :
! |
! : i |
: \"4 Upload IPA | Upload APK :
SuU IT IReject [QEvm \/ reicct !
App Submission App Store |
I l
| Approved | Approved

\/

Vv
| @Set Release Date m Set Release Date
Release —

Typical Stages in a Mobile App Release Process:

1. Registration & Development (iOS & Android):
- Enroll in Apple's Developer Program and Google Play Console as iOS and Android developer
- Code using platform-specific tools: Swift/Obj-C for iOS, and Java/Kotlin for Android

2. Build & Test (iOS & Android):
Compile the app's binary, run extensive tests on both platforms to ensure functionality and
performance. Create a release candidate build.

3. QA:

- Internally test the app for issue identification (dogfooding)
- Beta test with external users to collect feedback

- Conduct regression testing to maintain feature stability

4. Internal Approvals:

- Obtain approval from stakeholders and key team members.
- Comply with app store guidelines and industry regulations

- Obtain security approvals to safeguard user data and privacy

5. App Store Optimization (ASO):

- Optimize metadata, including titles, descriptions, and keywords, for better search visibility
- Design captivating screenshots and icons to entice users

- Prepare engaging release notes to inform users about new features and updates

6. App Submission To Store:

- Submit the iOS app via App Store Connect following Apple's guidelines

- Submit the Android app via Google Play Console, adhering to Google's policies
- Both platforms may request issues resolution for approval

7. Release:
- Upon approval, set a release date to coordinate the launch on both iOS and Android platforms

Over to you:
What's the most challenging phase you've encountered in the mobile app release process?

A handy cheat sheet for the most popular cloud services (2023
edition)

| Cloud Comparison Cheat Sheet

) blog.bytebytego.com

\‘——s’;?
=] Elastic Compute
Cloud (EC2)
Elastic Kubernetes
Service (EKS)
Lambda

Simple Storage
Service (S3)

Elastic Block Store

"=
Elastic File System
Virtual Private
O
Cloud
Route 53
Elastic Load
S Balancing
é“,i,;’a Web Application
=2 Firewall

DynamoDB

Redshift
Elastic MapReduce

Kinesis
SageMaker
Glue

EventBridge

Simple Queuing
Service

;

/! A Azure
n Virtual Machine

Wl Azure Kubernetes
B Service (AKS)

<> Pzure Functions

Blob Storage
. File Storage
43 Virual Network
O

@ Load Balancer

Web Application
Firewall

m SQL Database

’/ Cosmos DB

Managed Disk

F: Synapse Analytics
P2 Hpinsight
Streaming Analytics
Machine Learning
Data Factory
{, Event Grid

Storage Queues
Service Bus

Monitor

Resource Manager

Active Directory

D@ BRG]

Key Vault

Y Google Cloud
= 4 = Compute Engine

Google Kubernetes
% Engine (GKE)

|} Cloud Functions

: : Cloud Storage

'.—I- Persistent Disk

my File Store

l:: Virtual Private
Cloud

[= cloud DNs

'i'F\ Cloud Load
Balancing

@ Cloud Armor

? Cloud SQL

Firebase Realtime
Database

Q BigQuery
. Dataproc
E Dataflow
o
! Data Fusion
e |

{ #) Eventarc

Firebase Cloud
Messaging
229 Cloud Monitoring

~ Deployment
Manager

g Cloud Identity

9 Cloud KMS

ORACLE’

CLOUD
ﬁ Virtual
oog
Machine Instance
. Oracle Container
E]ﬂ Engine
. QCI Functions

Object Storage

=3 Persistent Volume

File Storage

Virtual Cloud

Web Application
Firewall

ooy
=1 AP

et
NoSQL Database

{]é,:@ Autonomous
@ﬂ Data Warehouse

Streaming

Data Science
&
Data Integration

(D)
Alibaba Cloud

@ Elastic Compute

= Service

%24 Alibaba Cloud

% Kubernetes Service

i~ Function

Compute
Object Storage
Service

@ Block Storage

=== Network Attached
@ Storage

Virtual Private
Cloud

&

MN
ONSDNS
N

Server Load
Balancer
.. Web Application
“ Firewall

E 'I ApsaraDB RDS

@ Table Store

a AnalyticDB

oV
- -Elastlc MapReduce

ll"l DataWorks
@ Eventbridge

Ii Message Queue

1:*] Message Service

-‘." CloudMonitor

Resource
Orchestration
Resource Access

Management

KMS

What'’s included?
AWS, Azure, Google Cloud, Oracle Cloud, Alibaba Cloud

Cloud servers
Databases

- Message queues and streaming platforms
- Load balancing, DNS routing software

- Security

- Monitoring

Over to you - which company is the best at naming things?

Best ways to test system functionality

Testing system functionality is a crucial step in software development and engineering
processes.

(EED U Isystem
- Functionality &) blog.bytebytego.com

Process lllustration Tools

a8 aa p_
. Jumt@@unit
Q-
m’f Eﬂ cucumber®
el Lz = SoapUI
@ @ aSelenium
~ rd

System @ @) 9
WORK/

Unit Testing

Integration
Testing

Testing appium
- ~
- - Module 4
@& T jfieter
g ----.0m [jMHeter
- == ==p .
Loa_d &, -~ ~-Om Performance Gatline
Testing P (response time, Q LocusT
- App throughput,
@ & error rate etc.,) QJ LOAD RUNNER

5: BB Latency Assault L f};“
Error S E tion Assault JRPEL= 08 Gremiin
Testing _ . So - ceP i
U T @

Jenkins &) Travis
Test —O—0O—@—@—@— YL

Automation Commit Trigger g .o Run Notify 9 circleci

: Test ®
Change Build Test Oucome 82 GitHub Actions

It ensures that a system or software application performs as expected, meets user
requirements, and operates reliably.

Here we delve into the best ways:

1. Unit Testing: Ensures individual code components work correctly in isolation.
2. Integration Testing: Verifies that different system parts function seamlessly together.

3. System Testing: Assesses the entire system's compliance with user requirements and
performance.

4. Load Testing: Tests a system's ability to handle high workloads and identifies
performance issues.

5. Error Testing: Evaluates how the software handles invalid inputs and error conditions.

6. Test Automation: Automates test case execution for efficiency, repeatability, and error
reduction.

Over to you:
- How do you approach testing system functionality in your software development or

engineering projects?

- What's your company's release process look like?

Explaining JSON Web Token (JWT) to a 10 year old Kid

{"what": "750n" L) S"'“;;‘:;f

3
A File Format 4o store dota in Key: value Pormat . Signature

cn be shing "o,lg" : "usase” 4

' . e " Y
"Key" 3 "volued", o sk o i e
“Keya" ["vdl", “val2"] asm“ﬂ 0
" "w o,
Kes 3 . i > another Tson
Nested Json ,

3 [Tson, Jsen] :
} %> or lish o} Tsn

.
0
0
.

U - [abcizaaq £21401 8 262121104, & 1239abectal [x
T T Il

: B i 2 T 52
X Y

Z

WowKing ?
—s ; # RS256

: — ‘ Sign JWT
: .usloSm : : ol & il i
ername , —
| Fereent |Ds=wer . .
e : ey

| | .credew{-inls = = : .' "

. I l . provider T PUHMm k-t -

CGreate & Sign
. Ol Fulhoszotion Bearer 0T [Twr with secrer .
Stove TWT ' [.Stjm"ﬂg}nc ke_l!
locally ; -
: ()mes * HMAC

- : # HS25¢

[—=

[Y= —TW—M'—) T
L= Validate with
. @

Shared Key

g‘gecwril-_y .:Zings.c@m Tn Collaborotion with @ ByteByteGo

Jwr
provider) «
~

Imagine you have a special box called a JWT. Inside this box, there are three parts: a header, a
payload, and a signature.

The header is like the label on the outside of the box. It tells us what type of box it is and how
it's secured. It's usually written in a format called JSON, which is just a way to organize

information using curly braces { } and colons : .

The payload is like the actual message or information you want to send. It could be your name,

age, or any other data you want to share. It's also written in JSON format, so it's easy to
understand and work with.

Now, the signature is what makes the JWT secure. It's like a special seal that only the sender
knows how to create. The signature is created using a secret code, kind of like a password. This
signature ensures that nobody can tamper with the contents of the JWT without the sender
knowing about it.

When you want to send the JWT to a server, you put the header, payload, and signature inside
the box. Then you send it over to the server. The server can easily read the header and payload
to understand who you are and what you want to do.

Over to you: When should we use JWT for authentication? What are some other authentication
methods?

How do companies ship code to production?

The diagram below illustrates the typical workflow.

How Companies Ship Code
To Production B blog.bytebytego.com

o o]
Plan fits) ___ o[Wira)
|

Product Owner
<’; o : Take user stories

_%e : __
o, [=]
e Developers =
5 Commit Csdf to Git O Feedback
evelop- S===—=-2| GitHub
ment

@ Jenkins
1 [JUnit JACOCO sonarqube

75
o 47’ OI Deploy & Dev Q

Build& QA testing ‘ ----- » docker Environment Cloud

PaCkage regression testlng\\\
performance testing So

\ ~
\ N s N\ o | featur
. RN) QA
Environment <-- J

\ J

v QA Q=

/ N

Store

Builds | jrrog Artifactory

I UAT
\ Testing —) I UAT
Test N - - Enwronment @ | Deploy
- \ / | feature
|
& .0 Od
Environment < AlBJ|.
docker Cloud |===——- SI=
r@] @9‘ Q Feature togg|
eature toggle
— - Tty > '5: <‘ 4 canary deployment
SRE -mon! oring i A/B test
-alerting Skywalking
Release -escalation

Step 1: The process starts with a product owner creating user stories based on requirements.

Step 2: The dev team picks up the user stories from the backlog and puts them into a sprint for

a two-week dev cycle.
Step 3: The developers commit source code into the code repository Git.

Step 4: A build is triggered in Jenkins. The source code must pass unit tests, code coverage
threshold, and gates in SonarQube.

Step 5: Once the build is successful, the build is stored in artifactory. Then the build is deployed
into the dev environment.

Step 6: There might be multiple dev teams working on different features. The features need to
be tested independently, so they are deployed to QA1 and QA2.

Step 7: The QA team picks up the new QA environments and performs QA testing, regression
testing, and performance testing.

Steps 8: Once the QA builds pass the QA team’s verification, they are deployed to the UAT
environment.

Step 9: If the UAT testing is successful, the builds become release candidates and will be
deployed to the production environment on schedule.

Step 10: SRE (Site Reliability Engineering) team is responsible for prod monitoring.

Over to you: what's your company's release process look like?

How does Docker Work? Is Docker still relevant?

We just made a video on this topic.

l How does (*I:1 5Ty Work ?

ﬁ blog.bytebytego.com
—
Docke[build DOCkFr pull Dock?r run
Z Vv 2
[Daemon J'

Containers Images

="

images

-
I Legend
v

@ v \ —Build==fp-

" NGiNX -
images _Run..’

Docker's architecture comprises three main components:

¢ Docker Client
This is the interface through which users interact. It communicates with the Docker
daemon.

¢ Docker Host
Here, the Docker daemon listens for Docker APl requests and manages various Docker
objects, including images, containers, networks, and volumes.

¢ Docker Registry
This is where Docker images are stored. Docker Hub, for instance, is a widely-used public
registry.

Explaining 8 Popular Network Protocols in 1 Diagram

Network protocols are standard methods of transferring data between two computers in a

network.
8 Popular NI [Protocols

@ blog.bytebytego.com

wrre (7)€ - wemea _

=T ¢ HTTP RESP L

Web Browsing

- UDP Connection _ T ik
e Dresr™E 8 9

— —————— loT Virtual Reality

€ — —TCP Connection— =

) _ _oublick - -
HTTPS (E'T/:‘Il iy '_°g@_) s By

WebSocket m € -===- >

o Full Duplex
) ¢ - — = —— PE— —»

Web Browsing

F =

Real-Time Data

Live Chat " Fransmission
— SYN >

Tep) sk TE=E ™M
— (T et
) | _ ACK_ _ _ > Web Browsing Email Protocols
(r/) ¢ — — —REQUEST— — — = o
ubDP {7 — — — RESPONSE— — - [mmms
TN
ad_TJ = = Video Conferencing
V4| B
SMTP ;
Senae SMTP Server receiver Sending/Receiving Emails

Control Channel

FTP @ :Ié BB & ¥

Upload/Download Files

1. HTTP (HyperText Transfer Protocol)
HTTP is a protocol for fetching resources such as HTML documents. It is the foundation
of any data exchange on the Web and it is a client-server protocol.

HTTP/3

HTTP/3 is the next major revision of the HTTP. It runs on QUIC, a new transport protocol
designed for mobile-heavy internet usage. It relies on UDP instead of TCP, which enables
faster web page responsiveness. VR applications demand more bandwidth to render
intricate details of a virtual scene and will likely benefit from migrating to HTTP/3
powered by QUIC.

HTTPS (HyperText Transfer Protocol Secure)
HTTPS extends HTTP and uses encryption for secure communications.

WebSocket

WebSocket is a protocol that provides full-duplex communications over TCP. Clients
establish WebSockets to receive real-time updates from the back-end services. Unlike
REST, which always “pulls” data, WebSocket enables data to be “pushed”. Applications,
like online gaming, stock trading, and messaging apps leverage WebSocket for real-time
communication.

TCP (Transmission Control Protocol)

TCP is is designed to send packets across the internet and ensure the successful delivery
of data and messages over networks. Many application-layer protocols build on top of
TCP.

UDP (User Datagram Protocol)

UDP sends packets directly to a target computer, without establishing a connection first.
UDP is commonly used in time-sensitive communications where occasionally dropping
packets is better than waiting. Voice and video traffic are often sent using this protocol.

SMTP (Simple Mail Transfer Protocol)
SMTP is a standard protocol to transfer electronic mail from one user to another.

FTP (File Transfer Protocol)
FTP is used to transfer computer files between client and server. It has separate
connections for the control channel and data channel.

System Design Blueprint: The Ultimate Guide

We've created a template to tackle various system design problems in interviews.

(R H H .
ystem Design Blueprint:
Nameserver
o The Ulti Guid
© | omin 2305678 e Ultimate Guide
P2
L =
¥ Matics Security Options/ Algo|
Bojpz: o
%, ||
Detays ° -
: 2 ByteByteG
g e b) ByteByteGo
© | awss®: =Get the IP-—p
1P
Top-level Domain
Nameserver
'
[_— : google.com : ?
I of com I‘ - % 2
I G- » Gaip, deflate 4 c « Response Time
+ RequestID 3 <] « Failecl Status Codes
© | Root *idempotentkey | T a8 « Error Codes |
Nameserver * Many more. -3 g:’ Message
L J/ 1 O
‘ 1
1
LOAD BALANCING % !_[l "
+ Input Validation -
* Authorization [Authentication APl Gateway Load Balancer Frontend Servers CDN / Edge Servers
: :‘h‘: ll‘i"’:i?;i IF“;'“""E ! #MultiPrimary #lnMemoryConnections #Global #Regional #Static
+ Whitelist/ Blacklisting : : .
ey ! + For Live Streaming / Chat Static / Stream with ABR
* Authentication (OAuth 2.0) : ! - 4 H
welie « Access Logs [T R i
fn e ! S S 1R | iy - i | comenmon
= ! * Number of Requests. 1 etesicomectons | I 1 5 T | = ActiveResources.
., |k | e e - | R
2 i i 1 i . ' !
. i i . ' -
Request Dispatching : 1 | Bandidin Ty
L ! S i Bl Serves satic
' < navsuramaac | Coment
Dispatch Messages Stk da
toother FE Servers. :
T
H
i
Server Topic { OBj 1D
- <] pr——
- o
Auto nerement
* uto ner. Muitple
Servers (0dd | Ever) Message
- S .
« ifine Generations uted ID © | Dispatcher
* Baidu UID generator Generator]
sl “« v ol
i - e o e = =
st | paciend servers. 5 = foreeynen | = I
s CE & 3 4 _,§ S Sy S
d = il
i < Comtot \
+ Googe ¢ fiiec R A]
Chubiy Distributed 1 S| 5
s Resource Locking ! i a
cokeepar [Message Queue |
» I Validate Checksum===="
' e
! S N W i, g
p ~ HEE MR 14" checkoum _lu—_szt e T
- . M AP A0R A | T -] ﬁ m g
' 1 Processing Workers
o i STREAMING CHUNK METADATA TABLE 1 UPLOAD MEDIA |
o e ~ & -
In-bemory Cache D BASE Pe —
e R Recommendation s
= o, of iems. = < Woldcords W ! service i
i) e Cogprocessing | s
i Stiett :;x:;}mm Pub / Sub Queue mEmmmmROl s senvice
s | Be=ll ﬂ .
o | fommm- ,.Q Seareh Service
S o Notification ,_|
et Tt +|
| - oo Bl
P Analytics Service o)
o cara
= + Sanvea o
Stopnnds - i
g i =l PaymentCharge | famna
tEEnE §) service
Shara: Repli Wi
| LW":’:‘L' i | COMMON FAN-OUT SERVICES
\ 5)

Hope this checklist is useful to guide your discussions during the interview process.
This briefly touches on the following discussion points:
- Load Balancing
- APl Gateway

Communication Protocols
Content Delivery Network (CDN)
Database

Cache

Message Queue

Unique ID Generation
Scalability

Availability

Performance

Security

Fault Tolerance and Resilience
And more

Key Concepts to Understand Database Sharding

In this concise and visually engaging resource, we break down the key concepts of database
partitioning, explaining both vertical and horizontal strategies.

L ¥]
@% PartiHon Verkical TS
Strategies e
Splitting DB on columng (T0 [First Name. B =}
Tp | First Name | Last Name Rt S;hguj :: —
1 | Rohit Sehgal Plex w i w
2 | Alex Xu Foo Bar 5
3| Foo Bar - Rt w
Last Name
4 | Adam Doe lmgdmam [Last Name)
Divectowy based Sharding
y 1Ip | Fivst Nome | Last Name. map which Stores
s g desigp ey
1 JRot S S et L -
3| Foo Bar Rohit- Sehgal
@ &uwo 4| Adam | Doe Adom Doe
. S | Joe | Joras
CHERDING ~[ih
P BT BEQ kg o]
Mostly
ed
Servies
Ro.nge. Based Shardinj
Uneen (Distribuhon | Name [Age Hovizontal y
@ Ront [28 —> Key based Sha.rdmj
i @ Alex 32 Pﬂ'ﬁ“b“
- ' fdam | 3%
et m:d 36 = =g
o R A e Even distibuion | (D |iFivst Name | Last Name)
john -
Anshy S0 I %3 1 |Rohit+ Sehgal
N [2lee Xu
- 1| 3§ Foo Bar
204 l\se <30 40¢ “’e\<5° 8@ 4 | Adam Doe.
Name |Age Name __ |Age , /1| 8 |; Joe Joras
— . Tohn 45 p-
) L = Anshu | So Tadh faaction

Tp | First Name | Last Name.)

093 1 [Ronit | Sehgal
— Hash == 4 | Adam Doe.
30Z Age £40 Value

Name Age| L
Alex |32 &L

1
2
Adam | 34| o, | 3 |
4
5

Hath ==9 Ip | Fivst Name | Last Name

Vot =ty o T plox - 8
S | Joe Jonas

-
] S
@EEXD

Foo | 36| i

1. Range-Based Sharding: Splitting your data into distinct ranges. Think of it as organizing
your books by genre on separate shelves.

2. Key-Based Sharding (with a dash of %3 hash): Imagine each piece of data having a
unique key, and we distribute them based on a specific rule. It's like sorting your playing
cards by suit and number.

3. Directory-Based Sharding: A directory, like a phone book, helps you quickly find the
information you need. Similarly, this technique uses a directory to route data efficiently.

Over to you: What are some other ways to scale a database?

A nice cheat sheet of different monitoring infrastructure in cloud

services

This cheat sheet offers a concise yet comprehensive comparison of key monitoring elements

across the three major cloud providers and open-source / 3rd party tools.

MONITORING CHEAT SHEET Bbkgbytebytego.com

Open Source
Element aWS 2 Google Cloud
Arzure |3 Party
Cloud .
(&) Cloud Wateh %% \po b g Azure Monitor | EZEEI , ©
—_ Cloud Watch — ; Azure Activity
2 Logs k= Cloud Logging Log P fluentd g logstash
Data . Cloud Audit . L
Collection LI Vsl @ Logs /‘: Azure Policy SPlunk> =@k
Tl Confi Custom agents .
9 / Scripts 0 Security Center © telegraf
Custom agents Custom agents Nagios sensu
/ Scripts / Scripts -
(== Cloud - MINIO O
Data Storage E] s3 = Siorage Blob Storage S ELETER c(e(g)h
‘ | i varaf na
. sas CloudWatch Cloud Azure Monitor ana £
Data Analysis | 57| Metrics Insights Q Operations Metrics Explorer i +ableaukibana
| Cloud .| D
= Azure Monitor PagerDuty
Alerting {3 SNS =%~ Monitoring -
= Alerts Alerts ;= slack
=9 CloudWatch 5 Cloud Azure Monitor 15 Grafana
B Doshboard | Monitoring Dashboard OO siiperset
Visualization Dashboard o
‘- °.°: Metabase
7% ickSi =" Data Studio S)
QuickSight - udi j Power BI 4 ableay re'dash
) | _~. Policy ’
iI28 Config Rules Security (e ; @
Reporting and 4 < Command ~* Compliance OpensCAP
Compliance ; Center Security Center —
Trusted Advisor Conplianes € CISOfy
Lambda <> Azure Functions €
Automation 5\'\' (-} Cloud Functions Azure JenseANSIBLE
Step Functions Automation
Cloud s i
Azure tigs Pulumi
=y . 7 2) i
CloudFormation !\Dnz;r)‘lgégent [.’] Autamation NP Terraform e
Integration -
d W GitLab
CodePipeline %: Cloud Build O Azure DevOps | jenkins Travis a
Feedback =W Well-Architected Well-Architected | 33 Well-Architected 7% & Sloud
Loop 28 Tool Framework *" Framework Scout APM

Let's delve into the essential monitoring aspects covered:

- Data Collection: Gather information from diverse sources to enhance decision-making.

- Data Storage: Safely store and manage data for future analysis and reference.
- Data Analysis: Extract valuable insights from data to drive informed actions.

- Alerting: Receive real-time notifications about critical events or anomalies.

- Visualization: Present data in a visually comprehensible format for better understanding.

- Reporting and Compliance: Generate reports and ensure adherence to regulatory
standards.

- Automation: Streamline processes and tasks through automated workflows.

- Integration: Seamlessly connect and exchange data between different systems or tools.

- Feedback Loops: Continuously refine strategies based on feedback and performance
analysis.

Over to you: How do you prioritize and leverage these essential monitoring aspects in your
domain to achieve better outcomes and efficiency?

Top 5 Software Architectural Patterns

Software Architecture Styles

Orchestration Architecture

a central coordinator (often

called an orchestrator) that :
directs the interaction between
services. The orchestrator is
responsible for managing the
control flow and data flow
between services.

y

MVP Architecture

derivative of the Model-View-
Controller (MVC) pattern, which

4a-=-==

CQRS Architecture

separates read and write
¥ operations for a data store.
It enables independent
scaling of read and write
workloads and optimizes
/ them separately.

Database Layer

Layered (n-tier) Architecture
¥ separates software into logical layers

Microkernel Architecture

g separates a minimal functional
core from extended functionality
and customer-specific parts.

._

Microservice Architecture

This architecture designs a
software application as a suite

of independently deployable,
small, modular services.

aims to separate the concerns of
data management, user
interface, and control flow.

=
[]

Event-Driven Architecture

promotes the production, ‘/
detection, consumption of, and
reaction to events.

Space-Based Architecture
This resolves the issues of data
consistency, reliable
performance, and scalability for
large-scale distributed systems.

DDD Architecture

Bk ivaiont focuses on the domain logic and
complexity rather than the
technology used.

Frocessing Unit

Processing Unit Processing Uit

ByteByteGo

In software development, architecture plays a crucial role in shaping the structure and behavior
of software systems. It provides a blueprint for system design, detailing how components
interact with each other to deliver specific functionality. They also offer solutions to common
problems, saving time and effort and leading to more robust and maintainable systems.

However, with the vast array of architectural styles and patterns available, it can take time to
discern which approach best suits a particular project or system. Aims to shed light on these
concepts, helping you make informed decisions in your architectural endeavors.

To help you navigate the vast landscape of architectural styles and patterns, there is a cheat
sheet that encapsulates all. This cheat sheet is a handy reference guide that you can use to
quickly recall the main characteristics of each architectural style and pattern.

OAuth 2.0 Flows

eEEED
O A Open Authorization ByteBgteGo
- (Semer fry
—= $5_ L '_‘ o —— 0
P
(1) — (2]
| et frowy-dota. | | | | l
I ? Authenkicate
o e b I | ClientT0 + Client Secret | |
l wih I ' l o 1 TD + Secvet Qe uul‘nd.l
“?n?mi‘:ﬁfwm: Seruer, an you Oushenticate l I l Tqu l
hcoded
|« :«»s s :zfm& | I Hey Server, use ihis (EEUTN.,, |
l T — | l for aceegsing 4ne Tesource R I
) s s e) T s (D wlid |] | mhmu]
T} yes then gimme (TR i i
I I ; Take s T I l l l
l I I I | OK, then vse this I
l M_“,ML? and give Me Tespurce
l profie. mfemation l I l '
! g ===l | P
l Here s wour data If Il ' P @
Resource Owner Password.
(Sever) [14)
= = (e @
e o — @ s —— 0
* ——8 $>_ '. = I o
| oo rdete. o | l | :
' 3 Can Yo authenticate l l %iﬂ"wf?: I ;@tg this Username password ,my client d & |
1= wih @ | | [My cliet Secret and give me
l can you auhenhcate me. 1 = ' l = | O, take this CZERTZY I
1 & +
'L I Youare Putenticoded l : I
L 1 s your I Access usourcm’:_% \ I
) smomiin: o | |] == | it s |
] Use i 1 o 1 1 plesse 1
shis CTRTD gire ;
| [> I | - P
| le s | |le———| |
| & Yere s gour datu. I I I | |

Authorization Code Flow: The most common OAuth flow. After user authentication, the client
receives an authorization code and exchanges it for an access token and refresh token.

Client Credentials Flow: Designed for single-page applications. The access token is returned
directly to the client without an intermediate authorization code.

Implicit Code Flow: Designed for single-page applications. The access token is returned directly
to the client without an intermediate authorization code.

Resource Owner Password Grant Flow: Allows users to provide their username and password
directly to the client, which then exchanges them for an access token.

Over to you - So which one do you think is something that you should use next in your
application?

How did AWS grow from just a few services in 2006 to over 200
fully-featured services?

Let's take a look.

Since 2006, it has become a cloud computing leader, offering foundational infrastructure,
platforms, and advanced capabilities like serverless computing and Al.

I AWS Services Evolution 8 blog.bytebytego.com

Simple DB

Iy
+
Management Console EMR EC2 Auto Scaling Elastic Load Balancer

SNS CloudFront Route53

Storage Simple Trusted DynamoDB S3 CloudSearch DataPipeline|
Gateway Workflow Advisor Glacier

I Redshift RDS OpsWorks CloudHSM CloudTrail CLI Kinesis Elastic Console
%L N Transcoder MobileApp|
Cost Work Code App KMS Directory Aurora Config Cognito Work =

Explorer Spaces Deploy stream Service Docs @ &

ECS Lambda WAF Budgets CodeCommit loTCore ché & Usage gnowball
eport

DMS SMS WorkMail ACM EFS Lightsail Athena Polly Shield Lumberyard

Managed Systems Deep Learning Application Step Personal Health
Services Manager AMis Discovery Functions Dashboard

Connect FreeRTOS Deep Code Sage Guard Comprehend Tensor te VMware|
Lens Star Maker Duty Flow Link Cloud
ae

i

loT Alexa for Elemental Elemental
Greengrass Business Medial ive MediaStore

Rl Apache Migration
Reporting MXNet Hub

5>
&g
I loT Device Kinesis Video Distro for
MediaTailor MediaPackage MediaConvert Management ~ Streams OpenTelemetry

Organizations

loT Auto loT FSxfor Secrets License
1-Click Scaling Analytics Lustre Manager Manager

S

Transit Transfer Firewall Elastic Global loT Device Well-
Gateway Family Manager Inferen or - Defender i Tool

=

Resour FSx for Serverless

Ground Truth MediaConnect Access Manager File Server Application Repository loT Document Event Personalize Augmented Security Savings Data

length Events DB Bridge Al Hub Plans Exchange

T el
BEE B

RDS on Launch Control Ground ~ Lake IoT Things Compute Managed CloudEndure
VMware Wizard Tower Station Formation Graph Optimizer Blockchain Migration

MWAA Kendra Braket Appflow Chatbot Copilot Monitron Detective Keyspaces

Honey Cloud Time IoT loT Code Deep Audit Fraud
code Shell stream EduKit SiteWise Artifact Composer Manager Detector

B4
4P

Migration Intera

(s
Network CloudEndure ~ Managed Service

DevOps Nimble Twin Roboe Tools & Resilience Managed Location RedHat
Guru Studio Maker Wise Runner SDKs Hub Grafana Service OpenShift
@

Cloud MemoryDB Lockout for Lookout for Lookoutfor Mainframe Fault Injection
ControlAPI for Redis Vision Metrics ~ Equipment Modernization Simulator

C’g,‘)

SimSpace Weaver Verified Access Verified P

This expansion empowered innovation, allowing complex applications without extensive

hardware management. AWS also explored edge and quantum computing, staying at tech's
forefront.

This evolution mirrors cloud computing's shift from niche to essential, benefiting global
businesses with efficiency and scalability

Happy to present the curated list of AWS services introduced over the years below.

Note:

- The announcement or preview year differs from the public release year for certain
services. In these cases, we've noted the service under the release year
- Unreleased services noted in announcement years

Over to you: Are you excited about all the new services, or do you find it overwhelming?

What is GraphQL? Is it a replacement for the REST API?

The diagram below shows the quick comparison between REST and GraphQL.

l REST v.s. GraphQL) blog.bytebytego.com

o----.----~\ ’-T---—.--~‘
‘ Cllet ! o Request: /user/123 g Moo
L a1 1

: 1 Response i 1
N - ~
! ! name: "Bob", 1 . 1
i Web ‘ gender: hale’y : :
1 L order: "456" 1 £
1 1 } 1 1
i < 1 1
1 1 1 1
1 1

: 1 6 Request: /order/456 : 1
1 . L B 1
1 Mobile ! Response 1 1
: : { I :

product: "abe", 1

' ! quantity: "2", ! t
I ! price: "100.00" ! ;
1 1 1 1
- PC e 4 : '
A ! \]
-~ ’, -~ ’

REST

Request
o {

e - user (id: 123): "Bob" {
4 Client * g::dz i
order {

product

quantity

price

__________ - ———— -,

/ Micorservices

User Service

S U RS U

Response
Mobile {
user {
id: "123"
name: "Bob"
gender: "male"
order {
product: "abc"
quantity: "2"
A # price: "100.00" R .5 Vemmmmmm- - ¢

Order Service

,____________________
ST T R S e A e T e
A

-

I
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
L]
1
]
1
\

-l -

} GraphQL

¢ GraphQl is a query language for APIs developed by Meta. It provides a complete
description of the data in the APl and gives clients the power to ask for exactly what they
need.

¢ GraphQl servers sit in between the client and the backend services.

¢ GraphQl can aggregate multiple REST requests into one query. GraphQL server organizes
the resources in a graph.

¢ GraphQL supports queries, mutations (applying data modifications to resources), and
subscriptions (receiving notifications on schema modifications).

Over to you:
1. Is GraphQL a database technology?
2. Do you recommend GraphQL? Why/why not?

HTTPS, SSL Handshake, and Data Encryption Explained to Kids

Hoo HTTPS S/

Dors |l hTT.R. 0

¢

*
Dota transfer bekween B Standard way

+o [—2)
. Client § Server is encryphed. . ﬁ
Q But without common encryption Key 5 Shase. Ligpes Tert

how data is enesypted ?7 server

o
Internet

@ Lets see how-...

Hypet Text & A Document /Lext hat
Cortains Unkis +o other text.

q
C_l_. Cevver Cerhi ficate Check ' Eq WML ':s.s.

\
B.um,

] = ._1:,
‘.) CLIENT? HELLD . % Coro
. ‘u'
I
i
I

SERVER ¢ HELLD E f
) Certificate
. E SERVER Cerdi #y‘mg i
CERTIFICATE

Ruthority

TIs this L& valid ¢ ==
i S—

Server

Encujp’red Tunne|
@ Keg ae Exchanje for data #ransmission

@
,

r) Extrack Server q A+ dhis point
& d H Client and Sevver —

both have common
{6 ' D Creakes a

— Key, Plso Known as ——s,
session Key Session Hey

Suites

.-'nln:‘h :

' '
' !
I know A,8,C,D cipher | 2 b

Ok, Lets use "c" Decrypt ~
. 3 y ecryp B
cipher suite us‘?nj

Encrypt using &
Server (50 3 C” cipher Sute ' R A+ this point @ (Sec_x0
e

Server has () Byte BytEGD

HTTPS: Safeguards your data from eavesdroppers and breaches. Understand how encryption
and digital certificates create an impregnable shield.

SSL Handshake: Behind the Scenes — Witness the cryptographic protocols that establish a
secure connection. Experience the intricate exchange of keys and negotiation.

Secure Data Transmission: Navigating the Tunnel — Journey through the encrypted tunnel
forged by HTTPS. Learn how your information travels while shielded from cyber threats.

HTML's Role: Peek into HTML's role in structuring the web. Uncover how hyperlinks and content
come together seamlessly. And why is it called HYPER TEXT.

Over to you: In this ever-evolving digital landscape, what emerging technologies do you foresee
shaping the future of cybersecurity or the web?

A nice cheat sheet of different databases in cloud services

~ Cloud Database Cheat Sheet

) blog.bytebytego.com

W Semi Structured m

Columnar []:D

Key : :
Value - ..
In-

Memory

Wide —
Column I.I
Time

Series B

Immutable @
Ledger E
Geospatial Q

Document @g@

Graph

Text g
Search —'_O\
Blob B

aws
(= RDS

Redshift

=74 DynamoDB
ElastiCache
Keyspaces

Timestream

Quantum
& Ledger DB

Keyspaces
Neptune

Document
E@ DB

|zl OpenSearch

[s

/AAzure

= SAL
@ Database

Synapse
@ Analytics

4, Cosmos DB

4 Azure Cache
v for Redis

4. Cosmos DB

~, Time Series
./ Insights

4 Confidential
i Ledger

‘. Cosmos DB
4, Cosmos DB

4 Cosmos DB

Q Cognitive

Search

Blob
Storage

Y Google Cloud

“2 Cloud SQL

(1) BigQuery
-/ BigTable
E ; Memory
~ Store

7! BigTable
7! BigTable
(1) BigQuery

. CloudSpanner

==\
SN

BigTable

¥,
\

. CloudSpanner

; FireStore

() Cloudsearch

I 1 Cloud Storage

Open Source / 3rd Party

Oracle PostgreSQL
T\, MysQL 3= SQL Server
%‘g Snowflake Click House

<2 Redis

Scylla

@ Redis . Memcached

<@ Cassandra @ Scylla
Influx E OpenTSDB
@ Hyper Ledger Fabric

@ rostals geomesa

- - OrientDB o Dgraph

. MongoDB QCouchbase

'fga Eézsrgﬁ (5% Elassandra
@ Ceph (D OpenlO

Choosing the right database for your project is a complex task. The multitude of database
options, each suited to distinct use cases, can quickly lead to decision fatigue.

We hope this cheat sheet provides high level direction to pinpoint the right service that aligns

with your project's needs and avoid potential pitfalls.

Note: Google has limited documentation for their database use cases. Even though we did our
best to look at what was available and arrived at the best option, some of the entries may be
not accurate.

Over to you: Which database have you used in the past, and for what use cases?

Cl/CD Pipeline Explained in Simple Terms

CI/ CD Pipelines ° E}{

o Software development Lifecycle

g’::hs;gs J E) =3 Deploy...
hay track d h is is wheve a
%,?ﬂc—s) fn;“,x:dnﬁ\ Pz /"s is wh happers..
<— local 'repo E—
CI/CD
0 v / R

4&— Continuou$ Integration — ‘ 4~ Continous delivery —>
|

#Bulld and tesk 1f code In commit % Tf everying is oRkay Sofar

1 * T moks peimgy
wotks well with other components deploy & package e e
§ git clone Tepo (A ~
$- L £ B Logging
- ChecKout Build package e
Yepo $make build

(4

Test on Q

*

%
gig
T

%,

in pa

9 Lets See in detail

gt Sarses

fackage
o G e . = i
tesks Mawsoring =
- ——_ -
Securi-lrj Zings.cmm In Collabovation with @ BytlBytEGo 'é(sg“g
1 = = |

Section 1 - SDLC with CI/CD
The software development life cycle (SDLC) consists of several key stages: development, testing,

deployment, and maintenance. Cl/CD automates and integrates these stages to enable faster,
more reliable releases.

When code is pushed to a git repository, it triggers an automated build and test process.
End-to-end (e2e) test cases are run to validate the code. If tests pass, the code can be
automatically deployed to staging/production. If issues are found, the code is sent back to
development for bug fixing. This automation provides fast feedback to developers and reduces
risk of bugs in production.

Section 2 - Difference between Cl and CD

Continuous Integration (Cl) automates the build, test, and merge process. It runs tests
whenever code is committed to detect integration issues early. This encourages frequent code
commits and rapid feedback.

Continuous Delivery (CD) automates release processes like infrastructure changes and
deployment. It ensures software can be released reliably at any time through automated
workflows. CD may also automate the manual testing and approval steps required before
production deployment.

Section 3 - CI/CD Pipeline
A typical CI/CD pipeline has several connected stages:
- Developer commits code changes to source control
- Cl server detects changes and triggers build
- Code is compiled, tested (unit, integration tests)
- Test results reported to developer
- On success, artifacts are deployed to staging environments
- Further testing may be done on staging before release
- CD system deploys approved changes to production

What does API gateway do?

The diagram below shows the detail.

What does AP| Gateway do? [Jblog.bytebytego.com

"i]"'

HTTP Request

API Gateway
Parameter Whitelist Authentication

Validation Blacklist Authorization

Service Dynamic

Discovery Routing Rate Limit

Protocol
Conversion

Logging Cache
K Monitoring /

Error Handling

Y Y

: . a®) ; i

Step 1 - The client sends an HTTP request to the API gateway.

Step 2 - The API gateway parses and validates the attributes in the HTTP request.

Step 3 - The API gateway performs allow-list/deny-list checks.
Step 4 - The API gateway talks to an identity provider for authentication and authorization.

Step 5 - The rate limiting rules are applied to the request. If it is over the limit, the request is
rejected.

Steps 6 and 7 - Now that the request has passed basic checks, the APl gateway finds the
relevant service to route to by path matching.

Step 8 - The API gateway transforms the request into the appropriate protocol and sends it to
backend microservices.

Steps 9-12: The API gateway can handle errors properly, and deals with faults if the error takes a
longer time to recover (circuit break). It can also leverage ELK (Elastic-Logstash-Kibana) stack for
logging and monitoring. We sometimes cache data in the API gateway.

Over to you:
1. What'’s the difference between a load balancer and an API gateway?
2. Do we need to use different APl gateways for PC, mobile and browser separately?

The Code Review Pyramid
By Gunnar Morling

Automate here!

Foaus your
review ePforts
here!

Licensed w

Smaller effort
for changes
later on

=

W T

Larger effort
for changes

later on

BY-S4 4.0 (¢) @gunmanmorling

The Code Review Pyramid

Questions to ask:

- Is the project's formatting style_ applied?

- Does it adhere to mgrccul on nawing conventions

- Is it DRY?

- Is the code suPficiently ‘readable’ (method lengths, ete.)

Questions to aski

- Are all tests passing?

- Are new features rensombfy tested?

- Are comer cases tested?

- Is it using unit tests where possible,
ntegration tests where necessary?

- Are there tests for NFRs, e.g. performance?

Questions to ask:

/ Tests
/

- New Peotures reasonably documerted?
- Are the relevant kinds of docs covered: README,
API docs, user guide, reference docs, ete.?

' bmuﬁgmf,a”tbn, ' - Are docs understandable, are there o significant
i typos and grammar mistakes?
‘ - Questions to ask:
Implementation

- Does it satisfy the original requirements?

- Is it logically correct?

- Is there no unnecessary complod‘ty?

- Is it robust (no concurrency issues,
proper error handling, ete.)?

- Is it performant?

- Is it secure (eg. no SAL injections, ete.)

- Is it observable (e.g. metrics, logging, tracing ete)?

- Do newly added dependencies pull their weight? Is
their license acceptable?

Questions to ask:

- APT as swall as FassiLle, as Iexrs,e as needed?
- Is there one way of doing one thing, not multiple ones?
- Is it consistent, does it Pollow the Pﬁmiple_ of least surprises?
- Clean split of APL/internals, without intemals leaking in the API?
- Are there no breaking changes to userfacing parts
UPT classes, configuration, metrics, log Formats, ete)?
- Is o new APT gererally usePul and not overly specific?

Over to you - Any other tips for effective code review?

https://www.linkedin.com/in/ACoAADk0a-gBumlYou5VPjjZZrbz5W644EI7wQI

A picture is worth a thousand words: 9 best practices for developing
microservices

Microservice Best Practices) blog.bytebytego.com
o 0 o
o v/ W v O OwW U Y
Separate data Keep code at a similar Separate build for
store level of maturity each microservice

Service C = Level 3 Service C — @¢

ServiceA | Level 3 i ¢
s serviceA —> (.
= =

) O (¢)
(L \ (/ \ (Trea‘r}e'ders as \
Single responsibility Deploy into containers stateless

Service A —> @
l T
req

[senicen |~ @ ‘I

Service C —> @ Services
- y | 4

(s) (o)

Ve G

Micro frontend Orchestrating
microservices
payments | orders . }
frontend J frontend API P /node1
| AP| Gateway | u T node2
\L / Kubernetes
payments ‘ [orders I CLI Master node3
service / \))

K service

When we develop microservices, we need to follow the following best practices:

1. Use separate data storage for each microservice
2. Keep code at a similar level of maturity
3. Separate build for each microservice

Assign each microservice with a single responsibility
Deploy into containers

Design stateless services

Adopt domain-driven design

Design micro frontend

Orchestrating microservices

s R

Over to you - what else should be included?

What are the greenest programming languages?

Energy
©C T.00 |
(c) Rust 1.03
() C++ 1.34
() Ada 1.70
(v) Java 1.98
(c) Pascal 2.14
(c) Chapel 2.18
(v) Lisp 227
(c) Ocaml 2.40
(c) Fortran 2:.52
(c) Swift 2.79
(c) Haskell 3.10
(v) C# 3.14
() Go 3.23
(i) Dart 3.83
(v) F# 4.13
(i) JavaScript 4.45
(v) Racket 7.91
(i) TypeScript 21.50
(i) Hack 24.02
(i) PHP 29.30
(v) Erlang 42.23
(i) Lua 45.98
(i) Jruby 46.54
(i) Ruby 69.91
(i) Python 75.88

i) Perl 79.58

The study below runs 10 benchmark problems in 28 languages?. It measures the runtime,
memory usage, and energy consumption of each language. The abstract of the paper is shown
below.

https://lnkd.in/eYpvP3Dt

“This paper presents a study of the runtime, memory usage and energy consumption of twenty
seven well-known software languages. We monitor the performance of such languages using
ten different programming problems, expressed in each of the languages. Our results show
interesting findings, such as, slower/faster languages consuming less/more energy, and how
memory usage influences energy consumption. We show how to use our results to provide
software engineers support to decide which language to use when energy efficiency is a

”2

concern.

Most environmentally friendly languages: C, Rust, and C++
Least environmentally-friendly languages: Ruby, Python, Perl

Over to you: What do you think of the accuracy of this analysis?

https://lnkd.in/eczQYnHD

An amazing illustration of how to build a resilient three-tier
architecture on AWS

Image Credit: Ankit Jodhani

https://www.linkedin.com/in/ACoAADNAntABPlI73jmRzBk6eikEcrfw04kqocI

URL, URI, URN - Do you know the differences?

The diagram below shows a comparison of URL, URI, and URN.

URL vs URI vs URN) blog.bytebytego.com
(authority
N e
r
URL v/l : 80 /
identify and
Iogats rEsoUICES scheme d:;""?é" port path to file query anchor

_

4

A UHL is a subtype of URI

f

\

v/
URIL
scheme path

identify 4

resources

\ scheme authority path query)
A LRI is a subtype of URI

identify

resources scheme namespace hamespace

specific string
¢ URI

URI stands for Uniform Resource Identifier. It identifies a logical or physical resource on
the web. URL and URN are subtypes of URI. URL locates a resource, while URN names a

resource.

A URI is composed of the following parts:

scheme:[//authority]path[?query][#fragment]

¢ URL
URL stands for Uniform Resource Locator, the key concept of HTTP. It is the address of a
unique resource on the web. It can be used with other protocols like FTP and JDBC.

¢ URN
URN stands for Uniform Resource Name. It uses the urn scheme. URNs cannot be used

to locate a resource. A simple example given in the diagram is composed of a namespace
and a namespace-specific string.

If you would like to learn more detail on the subject, | would recommend W3C'’s clarification.

https://www.linkedin.com/feed/hashtag/?keywords=fragment&highlightedUpdateUrns=urn%3Ali%3Aactivity%3A7079122432124440576

What branching strategies does your team use?

G |t flow Img source: hitps://blog.jetbrains.com/space/2023/04/18/space-git-flow/

tag O.1 tag 0.2 tag 1.0
m—n >® >® >
B ™ 4ﬁx 0.2
-

&
release branch only bugfixes
\ for1.0 :
Y »
¥ release branches 5 & an ara 4
hotfix in /\ 7\
develop \ \ \
>

o > develOf i)
I N / \
¥ feature branches *—>e >0
"

major feature
for the next release [- >

W

« The main branch is for production code only.

* The develop branch is for development code.

feature branches are created from the develop branch.

hotfix branches are created from the main branch.

* release branches are created from the develop branch.

Teams often employ various branching strategies for managing their code, such as Git flow,
feature branches, and trunk-based development.

Out of these options, Git flow or its variations are the most widely favored methods. The
illustration by Jetbrains explains how it works.

Linux file system explained

The Linux file system used to resemble an unorganized town where individuals constructed their
houses wherever they pleased. However, in 1994, the Filesystem Hierarchy Standard (FHS) was
introduced to bring order to the Linux file system

Linux File Systems B ByteByteGo

Essential command

binaries @ -

| h = Interface to kernel
. g data structures

System bo

ot Home directo
SO - lroot ’.& ry

for root user

I
Iy Run-time
y)) program data
v l) recme ==
\ \ l Y4
Host-specific
system-wide

I
conflguratlon files @ letc

"llﬂ \
'Ilﬂ Wy \

User home directo ﬂ Hﬂ \ W 0 ggteasé%?':/:gg:

ser |

_______ v L ome ’ Jin) M (2 by s syster
'IU \ \
IM "\

Shared llbrary

\
1y Virtual directory
o AEDR O\

providing information
X about the s_)ist_em_ -
1 1
[} 1
Media file such - T (R f
———————————— J'0 “wwwwmwv >
I \
Temporary mounted) J 51 Unix System
IP/es;yste:ms /mnt " UU “ % Resoutces
_______________ h O o 5 0 5 0 0 5 5 5 5 5
[}
Add-on application

I @] File that is expected to
software packages m lopt |, Ivar i
o 5) O O 5 e 5 o o S |

continuously change

By implementing a standard like the FHS, software can ensure a consistent layout across various
Linux distributions. Nonetheless, not all Linux distributions strictly adhere to this standard. They
often incorporate their own unique elements or cater to specific requirements.

To become proficient in this standard, you can begin by exploring. Utilize commands such as
"cd" for navigation and "Is" for listing directory contents. Imagine the file system as a tree,
starting from the root (/). With time, it will become second nature to you, transforming you into
a skilled Linux administrator.

Have fun exploring!

Over to you: What Linux commands are useful for navigating and examining files?

Do you believe that Google, Meta, Uber, and Airbnb put almost all of
their code in one repository?

This practice is called a monorepo.

Monorepo vs. Microrepo. Which is the best? Why do different companies choose different
options?

Monorepo vs Microrepo: which is the best? B ByteByteGo.com

Monorepo Microrepo

& Google 0OMeta | amazon NETFLIX
oo Uber @oirbnb Linkedfff] oracLe

Company Linux {\ E® \Windows / APACHE
: Service Owners | 8 8 8 8 8
R Service A 8 H

m Seivice B 8 Service A Service B : Common
Common 8 88 H ; H

Collaboration
Services work under the same repository. Service owners work under separate repositories.

i| sewviceA |!!| ServiceB | !

‘ | Service A | | Service B | | Common : P : Common | :

é 5 Dependency A= 11; i oa=o || A= | A=12 |

Dependency |~ | |t

Service share the same dependency. Service choose their own dependency.

s @ Service A ServiceB | ! i :

5 | i Stadndards]

= 2 |-] T T T f
°
- :
173

i | serviceD || Common | Serl\jzice i Serxice Se';ice Common ||

Services share the same standard. Services set their own standard.
-) b N
@ Bazel “‘ Buck & @ Maven
ile nepuld

< os e
Tooling }\'L — L m ACMake

Scalability

Monorepo isn't new; Linux and Windows were both created using Monorepo. To improve
scalability and build speed, Google developed its internal dedicated toolchain to scale it faster
and strict coding quality standards to keep it consistent.

Amazon and Netflix are major ambassadors of the Microservice philosophy. This approach
naturally separates the service code into separate repositories. It scales faster but can lead to
governance pain points later on.

Within Monorepo, each service is a folder, and every folder has a BUILD config and OWNERS
permission control. Every service member is responsible for their own folder.

On the other hand, in Microrepo, each service is responsible for its repository, with the build
config and permissions typically set for the entire repository.

In Monorepo, dependencies are shared across the entire codebase regardless of your business,
so when there's a version upgrade, every codebase upgrades their version.

In Microrepo, dependencies are controlled within each repository. Businesses choose when to
upgrade their versions based on their own schedules.

Monorepo has a standard for check-ins. Google's code review process is famously known for
setting a high bar, ensuring a coherent quality standard for Monorepo, regardless of the
business.

Microrepo can either set their own standard or adopt a shared standard by incorporating best
practices. It can scale faster for business, but the code quality might be a bit different.

Google engineers built Bazel, and Meta built Buck. There are other open-source tools available,
including Nix, Lerna, and others.

Over the years, Microrepo has had more supported tools, including Maven and Gradle for Java,
NPM for NodelS, and CMake for C/C++, among others.

Over to you: Which option do you think is better? Which code repository strategy does your
company use?

What are the data structures used in daily life?

* & & o o

10 Data Structures Used in Daily Life) ByteByteGo.com
Data Structure Illustration Use Cases

List Twitter feeds

Math operations
Atray Jl_;lﬁfi,fi, Large data sets

|1 .
Stack I Undo/Redo of word editor
Printer jobs

Lo B 8 8 B User actions in game
Heap Task scheduling
THER HTML document

AI decision

Suffix Tree

Search string in
document

Friendship tracking

Graph Path finding
R-tree [ﬂ———J%:::] Nearest neighbour
> > O
Hash Table — >0 Caching systems

=

list: keep your Twitter feeds
stack: support undo/redo of the word editor
gueue: keep printer jobs, or send user actions in-game

heap: task scheduling
tree: keep the HTML document, or for Al decision

suffix tree: for searching string in a document
graph: for tracking friendship, or path finding
r-tree: for finding the nearest neighbor

vertex buffer: for sending data to GPU for rendering

* & & o

To conclude, data structures play an important role in our daily lives, both in our technology and
in our experiences. Engineers should be aware of these data structures and their use cases to
create effective and efficient solutions.

Over to you: Which additional data structures have we overlooked?

Why did Amazon Prime Video monitoring move from serverless to
monolithic? How can it save 90% cost?

The diagram below shows the architecture comparison before and after the migration.

Amazon Prime Video monitoring - From Serverless to Monolithic

f) blog.bytebytego.com

Serverless Monolithic - Saves 90% Cost
sgm g@a
User User \

Amazon SNS

l audio/video streams

Media] i i
Converter frames E Orchestration

Amazon S3

© : audiohvideo

Amazon SNS
i : streams frames analyze
i » Media
Do AT e, . I Converter
defects Entry Point . Defect Detector

l 5 Detector

...

Step Function Step Function Step Function E

Result
Aggregation

Amazon ECS
(Single Process) : :

R aggregated
Defect Detector: @ results

_ (HSiHEuE

Amazon S3 Amazon S3

Result

Aggregation

aggregated results

Based on: https://primevideotech.com/
What is Amazon Prime Video Monitoring Service?

Prime Video service needs to monitor the quality of thousands of live streams. The monitoring
tool automatically analyzes the streams in real time and identifies quality issues like block

corruption, video freeze, and sync problems. This is an important process for customer
satisfaction.

There are 3 steps: media converter, defect detector, and real-time notification.
¢ What is the problem with the old architecture?

The old architecture was based on Amazon Lambda, which was good for building
services quickly. However, it was not cost-effective when running the architecture at a
high scale. The two most expensive operations are:

1. The orchestration workflow - AWS step functions charge users by state transitions and
the orchestration performs multiple state transitions every second.

2. Data passing between distributed components - the intermediate data is stored in
Amazon S3 so that the next stage can download. The download can be costly when the
volume is high.

¢ Monolithic architecture saves 90% cost

A monolithic architecture is designed to address the cost issues. There are still 3
components, but the media converter and defect detector are deployed in the same
process, saving the cost of passing data over the network. Surprisingly, this approach to
deployment architecture change led to 90% cost savings!

This is an interesting and unique case study because microservices have become a go-to
and fashionable choice in the tech industry. It's good to see that we are having more
discussions about evolving the architecture and having more honest discussions about
its pros and cons. Decomposing components into distributed microservices comes with a
cost.

¢ What did Amazon leaders say about this?
Amazon CTO Werner Vogels: “Building evolvable software systems is a strategy, not a
religion. And revisiting your architectures with an open mind is a must.”

Ex Amazon VP Sustainability Adrian Cockcroft: “The Prime Video team had followed a
path | call Serverless First...l don’t advocate Serverless Only”.

Over to you: Does microservice architecture solve an architecture problem or an
organizational problem?

18 Most-used Linux Commands You Should Know

18 Most-used Linux Commands §) ByteByteGo.com
/ B N
ls cd mkdir
list files and directories change current directory create new directory
L 4 AL / _
'd o . N\
rm mv chmod
remove files or directories move or rename files change file or
or change file or directory L directories permission
J P y.
N N
cp find grep
copy files or directories earch for files or directories search for a pattern in files
A J P9
: R @)
vi cat tar
edit files using text editor display the content of files manipulate tarball archive
fil
N PN V9 nes
e 3 N
ps kill top
display process information termlne?te proFess by display process and
sending a signal resource usage
L A y. 9
g N R N
ifconfig ping du
configure network test network connectivity estimate file space usage
interfaces between hosts
N Yy, W .

Linux commands are instructions for interacting with the operating system. They help manage
files, directories, system processes, and many other aspects of the system. You need to become
familiar with these commands in order to navigate and maintain Linux-based systems efficiently
and effectively. The following are some popular Linux commands:

Is - List files and directories

cd - Change the current directory

mkdir - Create a new directory

rm - Remove files or directories

cp - Copy files or directories

mv - Move or rename files or directories
chmod - Change file or directory permissions
grep - Search for a pattern in files

find - Search for files and directories

tar - manipulate tarball archive files

vi - Edit files using text editors

cat - display the content of files

top - Display processes and resource usage
ps - Display processes information

kill - Terminate a process by sending a signal
du - Estimate file space usage

ifconfig - Configure network interfaces

ping - Test network connectivity between hosts

L I B JBE B 2N ZNE JBE 2R JEE JNE N JNE R R JEE JNR N 2

Over to you: What is your favorite Linux command?

Would it be nice if the code we wrote automatically turned into
architecture diagrams?

| recently discovered a Github repo that does exactly this: Diagram as Code for prototyping
cloud system architectures.

|Diagram as Code

from diagrams import Cluster, Diagram

from diagrams.aws.compute import ECS

from diagrams.aws.database import ElastiCache, RDS
from diagrams.aws.network import ELB

from diagrams.aws.network import Route53

with Diagram("Clustered Web Services", show=False):
dns = Route53("dns")
LbE=SEI'B (S Tb%)

with Cluster("Services"):
svc_group = [ECS("webl"),
ECS("web2"),
ECS("web3")]

with Cluster("DB Cluster"):
db_primary = RDS("userdb")
db_primary - [RDS("userdb ro")]
memcached = ElastiCache('memcached")
dns >> 1b >> svc_group

svc_group >> db_primary
svc_group >> memcached

Services

web3 T R

* “memcached

web2

Clustered Web Services

What does it do?
- Draw the cloud system architecture in Python code.
- Diagrams can also be rendered directly inside the Jupyter Notebooks.
- No design tools are needed.
- Supports the following providers: AWS, Azure, GCP, Kubernetes, Oracle Cloud, etc.

Netflix Tech Stack - Part 1 (ClI/CD Pipeline)

NETFLIX Tech Stack (CI/CD Pipeline) @ blog.bytebytego.com

' % &
C. ¥ Jira Jenns 73_1 Da
e Confluence Animator Packer
boot
PolyAote)
Spinnaker
:LE:’/‘) ﬂ Ve N
java puthon pagerduty
’Scala JS j,/
K Kotlin [) E

| Dispatch
-
/\ 5 - @. w
\@) ﬁ Eh@ll)gg L‘-,S Kayenta
nebula Gradle ml]h:hu el A 4

Planning: Netflix Engineering uses JIRA for planning and Confluence for documentation.

Coding: Java is the primary programming language for the backend service, while other
languages are used for different use cases.

Build: Gradle is mainly used for building, and Gradle plugins are built to support various use
cases.

Packaging: Package and dependencies are packed into an Amazon Machine Image (AMI) for
release.

Testing: Testing emphasizes the production culture's focus on building chaos tools.

Deployment: Netflix uses its self-built Spinnaker for canary rollout deployment.

Monitoring: The monitoring metrics are centralized in Atlas, and Kayenta is used to detect
anomalies.

Incident report: Incidents are dispatched according to priority, and PagerDuty is used for
incident handling.

18 Key Design Patterns Every Developer Should Know

18 Key Design Patterns Every Developer Should Know

Abstract Factory
Family creator

Create groups of related items

Builder
Lego master

Build object step by step

) ByteByteGo.com

Prototype
Cloner

Create copies from examples

Singlefon
The one and only

With just one instance

Adapter
Universal plug

Connect different interfaces

Bridge
Connector

Link what is to how it works

Composite
Tree builder

Create tree-like structure

Decorator
Customizer

Add new features to existing object

Facade
One-stop shop

Single interface to all functions

Flyweight
Space saver

Share small, reusable items

Proxy
Middle man

Represent another object

Chain of responsibility
Replayer

Relay requests until it is handles

Command
Task wrapper

Turn a request info object

Iterator
Explorer

Assess element one by one

Mediator
Hub

Simplify communication between classes

Memento
Capsule

Capture and store object state

Observer
Broadcaster

Notify others about the change

Visitor

Guests

Explore an object without changing it

Patterns are reusable solutions to common design problems, resulting in a smoother, more
efficient development process. They serve as blueprints for building better software structures.
These are some of the most popular patterns:

¢ Abstract Factory: Family Creator - Makes groups of related items.

® S & & O O 0o

* & & & o o

Builder: Lego Master - Builds objects step by step, keeping creation and appearance
separate.

Prototype: Clone Maker - Creates copies of fully prepared examples.

Singleton: One and Only - A special class with just one instance.

Adapter: Universal Plug - Connects things with different interfaces.

Bridge: Function Connector - Links how an object works to what it does.

Composite: Tree Builder - Forms tree-like structures of simple and complex parts.
Decorator: Customizer - Adds features to objects without changing their core.

Facade: One-Stop-Shop - Represents a whole system with a single, simplified interface.
Flyweight: Space Saver - Shares small, reusable items efficiently.

Proxy: Stand-In Actor - Represents another object, controlling access or actions.

Chain of Responsibility: Request Relay - Passes a request through a chain of objects until
handled.

Command: Task Wrapper - Turns a request into an object, ready for action.

Iterator: Collection Explorer - Accesses elements in a collection one by one.

Mediator: Communication Hub - Simplifies interactions between different classes.
Memento: Time Capsule - Captures and restores an object's state.

Observer: News Broadcaster - Notifies classes about changes in other objects.

Visitor: Skillful Guest - Adds new operations to a class without altering it.

How many API architecture styles do you know?

API Architecture Styles B) ByteByteGo.com
Style I1lustration Use Cases
SOAP = — = XML-based
=—] [XML) = for enterprise applications
N =
RESTful Resource —b—E: fRoers c:duerbcesebravseerfis
e
- N e Query language
Sraphll | I e " 8 reduce network load
— ==} High performance
ERFL o R e == | for microservices
o Bi-directional
WebSocket ; push = for low-latency data exchange
Webhook 5- 1*‘5- Asynchronous
=V <. agyne ---" = for event-driven application

Architecture styles define how different components of an application programming interface
(API1) interact with one another. As a result, they ensure efficiency, reliability, and ease of

integration with other systems by providing a standard approach to designing and building APIs.
Here are the most used styles:

¢ SOAP:

Mature, comprehensive, XML-based
Best for enterprise applications

¢ RESTful:

Popular, easy-to-implement, HTTP methods
Ideal for web services

¢ GraphQlL:
Query language, request specific data
Reduces network overhead, faster responses

¢ gRPC:
Modern, high-performance, Protocol Buffers
Suitable for microservices architectures

¢ WebSocket:
Real-time, bidirectional, persistent connections
Perfect for low-latency data exchange

¢ Webhook:
Event-driven, HTTP callbacks, asynchronous

Notifies systems when events occur

Over to you: Are there any other famous styles we missed?

Visualizing a SQL query

| SQL Query Execution Order) ByteByteGo.com

t

t2

SELECT column_a, column_b

FROM t1

JOIN t2
ON t1.column_a = t2.column_a
WHERE constraint_expression

GROUP BY column

w |][

s

-
y

HAVING constraint_expression
ORDER BY column ASC/DESC
LIMIT count;

SQL statements are executed by the database system in several steps, including:
Parsing the SQL statement and checking its validity
Transforming the SQL into an internal representation, such as relational algebra

- Optimizing the internal representation and creating an execution plan that utilizes index
information
- Executing the plan and returning the results

The execution of SQL is highly complex and involves many considerations, such as:
The use of indexes and caches

The order of table joins

- Concurrency control

Transaction management

Over to you: what is your favorite SQL statement?

What distinguishes MVC, MVP, MVVM, MVVM-C, and VIPER
architecture patterns from each other?

'MVC, MVP, MVVM, VIPER patterns) ByteByteGo.com
MVC: Model View Controller
Controller -
not.ify update
. View : get data < Model
i
MVP: Model View Presenter
. . : notify r update
] View Presenter Model
i update ' : get data -
MUVM: Model View View-Model
o o ~~—Data binding — ' update Kaal.
: iew iew Mode . ode
Y — Notify - Notify -
MVUM-C: Model View :
View-Hodel Coordinator
Coordinator _
control
. i g - Data binding ; . ; update e i
iew iew Mode . ode i
. ; Notify — — — - Notify- ‘
VIPER: View, Interactor :
Preser;ter, Entity: Router Entity
Router — SE—
manage notify manage
. . - Data binding ; update
View Presenter \ Interactor
o — Notify — - Notify -

These architecture patterns are among the most commonly used in app development, whether
on iOS or Android platforms. Developers have introduced them to overcome the limitations of
earlier patterns. So, how do they differ?

MVC, the oldest pattern, dates back almost 50 years

Every pattern has a "view" (V) responsible for displaying content and receiving user input
Most patterns include a "model" (M) to manage business data

"Controller," "presenter," and "view-model" are translators that mediate between the
view and the model ("entity" in the VIPER pattern)

¢ These translators can be quite complex to write, so various patterns have been proposed
to make them more maintainable

* & & o

Over to you: keep in mind that this is not an exhaustive list of architecture patterns. Other
notable patterns include Flux and Redux. How do they compare to the ones mentioned here?

Almost every software engineer has used Git before, but only a

handful know how it works :)

How Git Commands work @ ByteByteGo.com
Working Staging Local Remote
Directory Area Repo Repo
git add git commit git push
git merge git fetch
git pull
git checkout : git clone
Local | Remote

To begin with, it's essential to identify where our code is stored. The common assumption is
that there are only two locations - one on a remote server like Github and the other on our local
machine. However, this isn't entirely accurate. Git maintains three local storages on our

machine, which means that our code can be found in four places:

¢ Working directory: where we edit files

¢ Staging area: a temporary location where files are kept for the next commit

¢ Local repository: contains the code that has been committed
¢ Remote repository: the remote server that stores the code

Most Git commands primarily move files between these four locations.

Over to you: Do you know which storage location the "git tag" command operates on? This
command can add annotations to a commit.

| read something unbelievable today: Levels. fyi scaled to millions of
users using Google Sheets as a backend!

Levels.fyi scaled to millions with Google Sheets as backend

pe -

[

Add salary flow

a . Add Salary Salary submission
al levelsfyi =2, Lambda &

API Gateway Google Sheets
Build json files
Read flow
b 4
JSON chef | Fetch salaries E
Lambda
Google Sheets
Text v
> Fetch json files ;
dl levelsfyi ——=» % 1 w}
53

CDN

—uue= -
/ 5 salaries.json &= cache miss cache miss
Al levelsfyi ——————»| 7 > 20 ——— > -
&

B Cach
rowser Cache DN s3

Source: hitps://www.levels.fyi/blog/scaling-to-millions-with-google-sheets.html
They started off on Google Forms and Sheets, which helped them reach millions of monthly
active users before switching to a proper backend.

To be fair, they do use serverless computing, but using Google Sheets as the database is an
interesting choice.

Why do they use Google Sheets as a backend? Using their own words: "It seems like a pretty

counterintuitive idea for a site with our traffic volume to not have a backend or any fancy
infrastructure, but our philosophy to building products has always been, start simple and
iterate. This allows us to move fast and focus on what’s important".

What are your thoughts? The link to the original article is embedded at the bottom of the
diagram.

Best ways to test system functionality

Testing system functionality is a crucial step in software development and engineering

processes.

It ensures that a system or software application performs as expected, meets user

requirements, and operates reliably.

(Best Ways1To}

Unit Testing

Integration
Testing

System
Testing

Y Module 4

Load ,_I:’ﬂ-___>
Testing &f ’:'/ -‘BE Performance

(response time,
7 App throughput,
\H! s error rate etc.,)

7’
o 2 D
; Pl Exception Assault
Testing A
Service B 4 KillApp Assault
Test —O0—@ @ @ ety
Automation Commit Trigger g4 Run SR
Change Build Test Outcome

System

Fu I‘lctional ity B blog.bytebytego.com
Process Illustration

Tools

(L
pytest Q

JUnit@ @unit

o POSTMAN

cucumber

Soapul
ﬂ Selenium

E Selenium
-~
&
RAM
ORE applum

Skl
M=

/ Meter

/Meter’

Gatline
Q LocusT

'-Z, LOAD RUNNER

| T

Greml'n

ﬁ Jenkins @Travis al

Dcircleci

Y29 GitHub Actions

Here we delve into the best ways:

1. Unit Testing: Ensures individual code components work correctly in isolation.
2. Integration Testing: Verifies that different system parts function seamlessly together.

3. System Testing: Assesses the entire system's compliance with user requirements and
performance.

4. Load Testing: Tests a system's ability to handle high workloads and identifies
performance issues.

5. Error Testing: Evaluates how the software handles invalid inputs and error conditions.

6. Test Automation: Automates test case execution for efficiency, repeatability, and error
reduction.

Over to you: How do you approach testing system functionality in your software development
or engineering projects?

Logging, tracing and metrics are 3 pillars of system observability

The diagram below shows their definitions and typical architectures.

Logging,Tracing,Metrics

) ByteByteGo
Y4 A
Metrics |« --[{--—--__
) i i I Request—};coped\ ~ 4
Service A Service B volume : metrics e v 1 1
i s £ i
A S L ‘ ! “f!?éﬂfmf oz [Serv[ce A] H [Service B] _
’ "
4 K | ’ i
) | ’ [- Iogstashj i [- IogstashJ i
influxdb | e ||| S I 7
] Traclng eg.rolups | | N T [-
:] Request \\ //
v | scoped N Py
: 4 kK
7z N] Request-scoped,
e \ | aggregatable I
/ N N High | Request-scoped <l *
‘ ‘ volume * events
n Alert kibana
4 Y Grafana
(15 coton | uier | /S
J A J/
- ™
Tracing
Service A
OTel Aut L i
| Collector Service Metics (o
————————— lq rafana
OTel API - OTel Collector
Y Logs
Telemetry | = —— -2 - %
Service B host
=
Instrumentation
OTel Collector
[omw |- oSertoamanry
’
Reference:https://peter.bourgon.org/blog/2017/02/21/
metrics-tracing-and-logging. html
® logging

Logging records discrete events in the system. For example, we can record an incoming
request or a visit to databases as events. It has the highest volume. ELK
(Elastic-Logstash-Kibana) stack is often used to build a log analysis platform. We often
define a standardized logging format for different teams to implement, so that we can
leverage keywords when searching among massive amounts of logs.

e Tracing
Tracing is usually request-scoped. For example, a user request goes through the API
gateway, load balancer, service A, service B, and database, which can be visualized in the
tracing systems. This is useful when we are trying to identify the bottlenecks in the

system. We use OpenTelemetry to showcase the typical architecture, which unifies the 3
pillars in a single framework.

® Metrics
Metrics are usually aggregatable information from the system. For example, service QPS,
APl responsiveness, service latency, etc. The raw data is recorded in time-series
databases like InfluxDB. Prometheus pulls the data and transforms the data based on
pre-defined alerting rules. Then the data is sent to Grafana for display or to the alert
manager which then sends out email, SMS, or Slack notifications or alerts.

Over to you: Which tools have you used for system monitoring?

Internet Traffic Routing Policies

Internet traffic routing policies (DNS policies) play a crucial role in efficiently managing and
directing network traffic. Let's discuss the different types of policies.

Internet Traffic Routing Policies
) ByteByteGo

1.Simple 2.Failover

Primary D D

FAnT]OO% DD lané Al

Users App || Users "\ 20
Fallover D +
App
3.Geolocation 4.Latency
2 & | &, 2
S~ ’ . Of 2 -
T30 v Mumbai - A ¢ Mumbai
S~~~ S, Virginia =~ o
Virginia T A g ~o_
(Default) E% c% & Cgb
Users location based restriction App served from least latency location
5.Multivalue Answer 6.Weighted
Active Confectfrl _)D D £0% >D D

G e

/
7 FarD 10.20.30.40 Fary A
0 ____,C:.; oQe___ PP
@ S = S (T

NN\ NN\
Cl|en‘tl N @@ | Vs ., 2.
10.20.30.40 “-—-7[:] + uo% "~ D +
3 50/60-70i60 50.60.70.80 App

1. Simple: Directs all traffic to a single endpoint based on a standard DNS query without
any special conditions or requirements.

2. Failover: Routes traffic to a primary endpoint but automatically switches to a secondary
endpoint if the primary is unavailable.

3. Geolocation: Distributes traffic based on the geographic location of the requester,
aiming to provide localized content or services.

4. Latency: Directs traffic to the endpoint that provides the lowest latency for the
requester, enhancing user experience with faster response times.

5. Multivalue Answer: Responds to DNS queries with multiple IP addresses, allowing the
client to select an endpoint. However, it should not be considered a replacement for a

load balancer.

6. Weighted Routing Policy: Distributes traffic across multiple endpoints with assigned
weights, allowing for proportional traffic distribution based on these weights.

Over to you: Which DNS policy do you find most relevant to your network management needs?

Subjects that should be mandatory in schools
In the age of Al, what subjects should be taught in schools?

An interesting list of subjects that should be mandatory in schools by startup_rules.

Subjects That Should Be
Mandatory In Schools

Fx: ’ .!j)

Taxes Coding Cooking Insurance

4 ° #N
" .
.._“ in . .,H -
“ ,fll. [\ -.JI il B.
Basic Home Self Survival Social
Repaire Defense Skills Etiquette
—— 2 4
tr =y
Personal Public Car Stress
Finance Speaking Maintenance Management
Startdp

—Rules—
While academics are essential, it's crucial to acknowledge that many elements in this diagram
would have been beneficial to learn earlier.

Over to you: What else should be on the list? What are the top 3 skills you wish schools would
teach?

Do you know all the components of a URL?

Uniform Resource Locator (URL) is a term familiar to most people, as it is used to locate
resources on the internet. When you type a URL into a web browser's address bar, you are
accessing a "resource", not just a webpage.

domain name path parameters
protocol port fragments

) blog.bytebytego.com

URLs comprise several components:
e The protocol or scheme, such as http, https, and ftp.
e The domain name and port, separated by a period (.)
e The path to the resource, separated by a slash (/)

e The parameters, which start with a question mark (?) and consist of key-value pairs, such
as a=b&c=d.

e The fragment or anchor, indicated by a pound sign (#), which is used to bookmark a
specific section of the resource.

What are the differences between cookies and sessions?

The diagram below shows how they work.

Cookies vs Sessions
5) ByteByteGo

s N

3.request(cookie)
mmmmm e 4.resource
Client Server
's N
_______ S,
2.create
session

< 4 resource

Server

Client

Cookies and sessions are both used to carry user information over HTTP requests, including user
login status, user permissions, etc.

e Cookies
Cookies typically have size limits (4KB). They carry small pieces of information and are
stored on the users’ devices. Cookies are sent with each subsequent user request. Users

can choose to ban cookies in their browsers.

Sessions

Unlike cookies, sessions are created and stored on the server side. There is usually a
unique session ID generated on the server, which is attached to a specific user session.
This session ID is returned to the client side in a cookie. Sessions can hold larger
amounts of data. Since the session data is not directly accessed by the client, the session
offers more security.

How do DevOps, NoOps change the software development lifecycle
(sbLC)?

The diagram below compares traditional SDLC, DevOps and NoOps.

DevOpsIE

) ByteByteGo
! |

Release Operate &

Monitor
et R 0
Ops

Release
Manager

Release
Developer QA Manager Ops

/@ Continuous development & integration
L . ® Cross-functional DevOps teams collaborate

s

- BAAAE&

(" ® Focus on delivering new features ,
L .. @ Serverless computing allows automated ops tasks ./

In a traditional software development, code, build, test, release and monitoring are siloed
functions. Each stage works independently and hands over to the next stage.

DevOps, on the other hand, encourages continuous development and collaboration between

developers and operations. This shortens the overall life cycle and provides continuous software
delivery.

NoOps is a newer concept with the development of serverless computing. Since we can
architect the system using FaaS (Function-as-a-Service) and Baa$S (Backend-as-a-Service), the
cloud service providers can take care of most operations tasks. The developers can focus on
feature development and automate operations tasks.

NoOps is a pragmatic and effective methodology for startups or smaller-scale applications,
which moves shortens the SDLC even more than DevOps.

Popular interview question: What is the difference between Process
and Thread?

To better understand this question, let’s first take a look at what a Program is. A Program is an
executable file containing a set of instructions and passively stored on disk. One program can
have multiple processes. For example, the Chrome browser creates a different process for every
single tab.

A Process means a program is in execution. When a program is loaded into the memory and
becomes active, the program becomes a process. The process requires some essential resources
such as registers, program counter, and stack.

A Thread is the smallest unit of execution within a process.

Program vs Process vs Thread [Jblosbytepytego.com

§ Process
Program (Disk) > (RAM)
-
¥4 Task Manager
File Options View
1J (K3
@ iy i Processes Performance App history Startup Users Details
imags Movie.app Intalii) IDEA Keynote.app ° 599% 48%
Capture.app CE.app
Name st. CPU | Memory
M = . Apps (5
Microsat i | - @ Firefox (7) 15% 3968 MB
OneiNots Qutlook, Word.:
neNTRe ki ihdd > @ Gaogle Chrome (20) 212% 7000 MB
‘,F_- ‘ @ _* @l Microsoft Word 0% 1581 MB
“ i -
» ¥ Snipping Tool 2.8% 5.2 MB
*heto Baoth, Photos. PlayonM Podcast
oto Booth.app LIGER:N) ayOniac.app ‘odcasts.app %3 Task Manager 0.4% 26.5 MB

Thread

N

Process

The following process explains the relationship between program, process, and thread.

1. The program contains a set of instructions.

2. The program is loaded into memory. It becomes one or more running processes.

3. When a process starts, it is assigned memory and resources. A process can have one or
more threads. For example, in the Microsoft Word app, a thread might be responsible
for spelling checking and the other thread for inserting text into the doc.

Main differences between process and thread:

® Processes are usually independent, while threads exist as subsets of a process.

e FEach process has its own memory space. Threads that belong to the same process share
the same memory.

® A process is a heavyweight operation. It takes more time to create and terminate.

e Context switching is more expensive between processes.

Inter-thread communication is faster for threads.

Over to you:

1. Some programming languages support coroutine. What is the difference between
coroutine and thread?
2. How to list running processes in Linux?

Top 6 Load Balancing Algorithms

Load Balancing Algorithms

1. Round Robin

) Load
() Balancer

@ blog.bytebytego.com

2. Sticky Round Robin

Service B

) Balancer

Service C

o
Alice
) Load
() Balancer
O,
o
. Bob
5. Least Connections
O,
o
Alice
Load
() Balancer
o =
&)
. Bob
Static Algorithms

1. Round robin

4. IP/URL Hash

O hash(IP) = 0
L) Service A

handle hash 0

) Load
.) Balancer

Service B

handle hash 1

hash(IP) =

(O) = Service C
! Bob handle hash 2
6. Least Time
U Service A
Alice

resp time: 100ms

) Load -
Balancer Service B

resp time: 10ms

Service C

: Bob resp time: Ims A_..»"

The client requests are sent to different service instances in sequential order. The
services are usually required to be stateless.

2. Sticky round-robin

This is an improvement of the round-robin algorithm. If Alice’s first request goes to

service A, the following requests go to service A as well.

3. Weighted round-robin

The admin can specify the weight for each service. The ones with a higher weight handle

more requests than others.

4. Hash
This algorithm applies a hash function on the incoming requests’ IP or URL. The requests
are routed to relevant instances based on the hash function result.

Dynamic Algorithms

5. Least connections
A new request is sent to the service instance with the least concurrent connections.

6. Least response time
A new request is sent to the service instance with the fastest response time.

Symmetric encryption vs asymmetric encryption

Symmetric encryption and asymmetric encryption are two types of cryptographic techniques
used to secure data and communications, but they differ in their methods of encryption and
decryption.

Sysmmetric vs Asymmetric Encryption

) ByteByteGo
' N ™
The same key E | |
! # ~ r] 1
; & . | | Public Private |
; 4 9 : Key Key !
| < >] |
L =) - >R - - - - | = | =) ----> AN ---- =2
i —— | Encryption Decryption — i i | = | Encryption Decryption — :
! Plaintext Encrypted Plaintext ! | Plaintext Encrypted Plaintext |
i Text ! ! Text |
e e
Use Cases BRESMes et S (VECRonEETS T1S Handshake
fName PAN number Email]
L Bob | XYZ123456 bob@gmail.comJ E %
I | ——
1 Client Se
Pll Data Token | - el
XYZ123456 |abb-aadc-xs| | Q- Fhandshake ol ,
: T ! i i
bob@amail.com | pgi-wjgk-tb | Certiﬁcatet ! 1 ? i
v €-----===5t and I8 B
| Name | PAN number Email | Session key
exchange
| Bob abb-aadc-xs pgi-wjgk-tb | === »
M A vy
ra '\‘ "\I - "\. .," "_.
Pros ; [Cons | Pros [Cons |
@ Faster,more efficient @ Key management @ Enhanced Security © Slow processing
@ Bulk encryption @ Key exhaustion @ Transparency © Loss of private key
N /N -)\ <)

e In symmetric encryption, a single key is used for both encryption and decryption of data.
It is faster and can be applied to bulk data encryption/decryption. For example, we can
use it to encrypt massive amounts of Pl (Personally Identifiable Information) data. It
poses challenges in key management because the sender and receiver share the same
key.

e Asymmetric encryption uses a pair of keys: a public key and a private key. The public key
is freely distributed and used to encrypt data, while the private key is kept secret and
used to decrypt the data. It is more secure than symmetric encryption because the
private key is never shared. However, asymmetric encryption is slower because of the
complexity of key generation and maths computations. For example, HTTPS uses
asymmetric encryption to exchange session keys during TLS handshake, and after that,
HTTPS uses symmetric encryption for subsequent communications.

How does Redis persist data?

Redis is an in-memory database. If the server goes down, the data will be lost.

The diagram below shows two ways to persist Redis data on disk:

1. AOF (Append-Only File)
2. RDB (Redis Database)

How Redis Persists Data?

AOF
(Append-Only File)

Client

Application E

B | cache
 Operation

record command

a on d}sk

EEEE

AOF file on Disk

.

) ByteByteGo
g

RDB
(Redis DB)

Client E
Application

!'cache
) Operation

modify copy |}
~

(4 BN ot W

bgsave copy MY
subprocess 7

Iy,

/
L

/
(&) copy to disk
//
k-/

=

RDF file on Disk

Note that data persistence is not performed on the critical path and doesn't block the write
process in Redis.

e AOF
Unlike a write-ahead log, the Redis AOF log is a write-after log. Redis executes
commands to modify the data in memory first and then writes it to the log file. AOF log
records the commands instead of the data. The event-based design simplifies data
recovery. Additionally, AOF records commands after the command has been executed in
memory, so it does not block the current write operation.

e RDB
The restriction of AOF is that it persists commands instead of data. When we use the
AOF log for recovery, the whole log must be scanned. When the size of the log is large,
Redis takes a long time to recover. So Redis provides another way to persist data - RDB.

RDB records snapshots of data at specific points in time. When the server needs to be
recovered, the data snapshot can be directly loaded into memory for fast recovery.

Step 1: The main thread forks the’ bgsave’ sub-process, which shares all the in-memory
data of the main thread. ‘bgsave’ reads the data from the main thread and writes it to
the RDB file.

Steps 2 and 3: If the main thread modifies data, a copy of the data is created.

Steps 4 and 5: The main thread then operates on the data copy. Meanwhile ‘bgsave’
sub-process continues to write data to the RDB file.

o Mixed
Usually in production systems, we can choose a mixed approach, where we use RDB to
record data snapshots from time to time and use AOF to record the commands since the
last snapshot.

IBM MQ -> RabbitMQ -> Kafka ->Pulsar, How do message queue
architectures evolve?

IHow do Message @UENES Evolve ?

£ blog.bytebytego.com

72 - .
Queue Manager Queue Manager

Queuet Queued

IBM MQ Queue2 Channel Queue2

P Queue3 Queue3 e
- Sending Receivin
Messaging B Application Queued Applicatingn

Middleware

ws =8
__,,f .

Broker

Pattern | |
Message Producer] m TR Queue3 |
| Queued

Queues :

Kafka Cluster

Broker1 | | Broker2 ' | Broker3 |
& kafka - =

Event Producer @ ‘ m : m

Streamin | | i
9 . Topic3d | Topic 3 - Topic3 |

Pulsar
{ Broker1 !
ZXpULSAR en g
e Parion 1+ (seament o)) |(segment 1)

e IBMMQ
IBM MQ was launched in 1993. It was originally called MQSeries and was renamed
WebSphere MQ in 2002. It was renamed to IBM MQ in 2014. IBM MQ_ is a very
successful product widely used in the financial sector. Its revenue still reached 1 billion
dollars in 2020.

e RabbitMQ
RabbitMQ architecture differs from IBM MQ and is more similar to Kafka concepts. The
producer publishes a message to an exchange with a specified exchange type. It can be
direct, topic, or fanout. The exchange then routes the message into the queues based on

different message attributes and the exchange type. The consumers pick up the message
accordingly.

e Kafka
In early 2011, LinkedIn open sourced Kafka, which is a distributed event streaming
platform. It was named after Franz Kafka. As the name suggested, Kafka is optimized for
writing. It offers a high-throughput, low-latency platform for handling real-time data
feeds. It provides a unified event log to enable event streaming and is widely used in
internet companies.

Kafka defines producer, broker, topic, partition, and consumer. Its simplicity and fault
tolerance allow it to replace previous products like AMQP-based message queues.

e Pulsar
Pulsar, developed originally by Yahoo, is an all-in-one messaging and streaming platform.
Compared with Kafka, Pulsar incorporates many useful features from other products and
supports a wide range of capabilities. Also, Pulsar architecture is more cloud-native,
providing better support for cluster scaling and partition migration, etc.

There are two layers in Pulsar architecture: the serving layer and the persistent layer.
Pulsar natively supports tiered storage, where we can leverage cheaper object storage
like AWS S3 to persist messages for a longer term.

Over to you: which message queues have you used?

Top 4 Kubernetes Service Types in one diagram

The diagram below shows 4 ways to expose a Service.

4 ({19 Service Types

) ByteByteGo

f
ClusterlP A NodePort h

¢ == Traffic - -1
T e S e o 0
: : &7 '
I cluster-internal i i Nigaae Node i
: IP address i ; i

= 1 ! | NodelP:NodePart E
v i

[|
! v '
0 0 © 0 0 ©o
Kubernetes Cluster] Kubernetes Cluster
N I\ et J
\
LoadBalancer ExternalName
Tralfﬁc Ext I
;
T

ne Balancer map 1o a domain name |
I
: R sesees —

I i -]
""""""""" " : Service ;
i : s |

Service | i
LB assigns requests | i ! L _:_ L
T T T | i d | ! |
{ ‘ Lo | : | f |
g2 92 | 2822
| L KubemetesCluster |)| | Kubemetes Cluster |

In Kubernetes, a Service is a method for exposing a network application in the cluster. We use a
Service to make that set of Pods available on the network so that users can interact with it.

There are 4 types of Kubernetes services: ClusterIP, NodePort, LoadBalancer and ExternalName.
The “type” property in the Service's specification determines how the service is exposed to the
network.

e C(lusterlP
ClusterlP is the default and most common service type. Kubernetes will assign a

cluster-internal IP address to ClusterIP service. This makes the service only reachable
within the cluster.

NodePort

This exposes the service outside of the cluster by adding a cluster-wide port on top of
ClusterIP. We can request the service by NodelP:NodePort.

LoadBalancer
This exposes the Service externally using a cloud provider’s load balancer.

ExternalName

This maps a Service to a domain name. This is commonly used to create a service within
Kubernetes to represent an external database.

Explaining 5 unique ID generators in distributed systems

The diagram below shows how they work. Each generator has its pros and cons.

51 :[':F [n2Generators

B blog.bytebytego.com
e A
uuID Snowflake |, Database | Database Redis
Auto-Increment| Segment
MyService MyService MyService MyServicel = MyService2 MyService
| |
UUID Gen Snowflake | | : I
ID Gen |
	I	
inserta]
new user		I I
@ Timestamp- : : ;		
based UUID SHLet 1bit I T	getID	
+Timestamp 41 bits : ('1	an [1001,2000]	
+MachinelD 10 bits 1		
o	[
[+SerialNumber 12 bits v		
[. 1	
@ Random) get a batch		
number- of IDs ¥		
based UUID DB 1‘ I é		
!		
ID UserName get a batch ! .		
of IDs ; redls		
/]		
=g 1 Bob) v		
@ Nam;pace : Aies @ - Lo		
based UUID 4 Carrie @ INCRBY		
DB		
[ordered	MNo ‘ [ordered Rm-nhl-sr‘ [ordered	Y35‘ l ordered ‘Yes‘ [ordered IYeg‘
l simplicity	Yes}	simplicity
l indexable	Hard‘ l indexable	Yes
:umqueness No ‘ uruquenessi Yes	[un	queness.‘”m[’e’ Iun
[in process l Yes ‘	in process	Yes
SPoF	No	

1. UUID

A UUID has 128 bits. It is simple to generate and no need to call another service.
However, it is not sequential and inefficient for database indexing. Additionally, UUID
doesn’t guarantee global uniqueness. We need to be careful with ID conflicts (although
the chances are slim.)

Snowflake

Snowflake’s ID generation process has multiple components: timestamp, machine ID,
and serial number. The first bit is unused to ensure positive IDs. This generator doesn’t
need to talk to an ID generator via the network, so is fast and scalable.

Snowflake implementations vary. For example, data center ID can be added to the
“MachinelD” component to guarantee global uniqueness.

DB auto-increment

Most database products offer auto-increment identity columns. Since this is supported
in the database, we can leverage its transaction management to handle concurrent visits
to the ID generator. This guarantees uniqueness in one table. However, this involves
network communications and may expose sensitive business data to the outside. For
example, if we use this as a user ID, our business competitors will have a rough idea of
the total number of users registered on our website.

DB segment

An alternative approach is to retrieve IDs from the database in batches and cache them
in the ID servers, each ID server handling a segment of IDs. This greatly saves the I/0
pressure on the database.

Redis

We can also use Redis key-value pair to generate unique IDs. Redis stores data in
memory, so this approach offers better performance than the database.

Over to you - What ID generator have you used?

How Do C++, Java, and Python Function?

We just made a video on this topic.

The illustration details the processes of compilation and execution.

How do CH+4, Java, Python Work9Q

blog.bytebytego.com

B

-coc g

[‘.:(g) Java

—_—

<)

A

python

JavaSeript

& Ruby]

Source Code

Source Code

- >

i

Machine Code

Q 0
T

Operating
System

>

Hardware

Virtual Machine "._°

1011

010
) || e
JIT Compiler | | Interpreter
(Just in Time)
[] L]
L}
n v

K>

Machine Code

Operating
System
[|
{ =l=ls

Hardware

Source Code

Operating
System

A

Hardware

J

'
1
[]
1
1
' - p[rO1O22 = ==p[lo1010 :
o == 120 m=== p1e '
- i ; Devel t
1 Compiler . Combpiler .
: : . B
. ' = Lep —
'_ . > :---> <I>
Ready to Use!
Machine Code Bytecode
(. VAN - AN
~ s aYa
I. - - -
| |
maw .. ; Bytecode ===

Languages that compile transform source code into machine code using a compiler. This
machine code can subsequently be run directly by the CPU. For instance: C, C++, Go.

In contrast, languages like Java first convert the source code into bytecode. The Java Virtual
Machine (JVM) then runs the program. Occasionally, a Just-In-Time (JIT) compiler translates the
source code into machine code to enhance execution speed. Some examples are Java and CH.

Languages that are interpreted don't undergo compilation. Instead, their code is processed by
an interpreter during execution. Python, Javascript, and Ruby are some examples.

Generally, compiled languages have a speed advantage over interpreted ones.

Watch the whole video here: https://Inkd.in/ezpN2jH5

https://lnkd.in/ezpN2jH5

How will you design the Stack Overflow website?

If your answer is on-premise servers and monolith (on the right), you would likely fail the
interview, but that's how it is built in reality!

| - stack overflow Architecture ByteByteGo.com

What people think it looks like
1. Microservice based 2. Event sourcing (CQRS) 3. Eventual consistency 4. Sharding
5. Heavy use cache 6. ...

— @

—» Comment Service

—> Ej —p EICDC -
—» User Service N a E

a I E . jcnc — Replica Ssic
Pro
& —~ @
—» Page Service
L @ — | |coC -
v
. Search
" | Service
Wha it actually is
1. Monolithic 2. Only 9 web servers
Elastic Search
. =|= h
= redis

Service
— (] bB

What people think it should look like
The interviewer is probably expecting something on the left side.

Microservice is used to decompose the system into small components.
Each service has its own database. Use cache heavily.

The service is sharded.

The services talk to each other asynchronously through message queues.
The service is implemented using Event Sourcing with CQRS.

vk wnN e

6. Showing off knowledge in distributed systems such as eventual consistency, CAP
theorem, etc.

What it actually is

Stack Overflow serves all the traffic with only 9 on-premise web servers, and it’s on monolith! It
has its own servers and does not run on the cloud.

This is contrary to all our popular beliefs these days.

Over to you: what is good architecture, the one that looks fancy during the interview or the one
that works in reality?

Explain the Top 6 Use Cases of Object Stores

|Top 6 bje Store Use Cases

@ blog.bytebytego.com

Data Unstructured |8 Cloud Native |
Archiving Data ‘ Storage |IR

Serwce 2

Media

_ I Service business business
i archive Iastlyear’s data | ‘ da‘ta dat'a

storelretneve data \ I
v v

bject & Object ~ Object
Store Store & -Store

Internet of Backup& |
' i ®

loT Devlces ‘ m : A
\ | ; 1] NAS 9\iSK

|
i Object sensorldata :
Ll =] Store ' [
|

: l |[| Object sensor data odover
kv Store I‘ egovel

]
Warehouse | | \ !
(]

I
|
I |
v

I _
] - ”f m 2 Ques

Analytics Learning Analytics Backups

e What is an object store?

Object store uses objects to store data. Compared with file storage which uses a
hierarchical structure to store files, or block storage which divides files into equal block
sizes, object storage stores metadata together with the objects. Typical products include
AWS S3, Google Cloud Storage, and Azure Blob Storage.

An object store provides flexibility in formats and scales easily.

e (Case 1: Data Archiving

With the ever-growing amounts of business data, we cannot store all the data in core
storage systems. We need to have layers of storage plan. An object store can be used to
archive old data that exists for auditing or client statements. This is a cost-effective
approach.

® (Case 2: Unstructured Data Storage

We often need to deal with unstructured data or semi-structured data. In the past, they
were usually stored as blobs in the relational database, which was quite inefficient. An
object store is a good match for music, video files, and text documents. Companies like
Spotify or Netflix uses object store to persist their media files.

e (Case 3: Cloud Native Storage

For cloud-native applications, we need the data storage system to be flexible and
scalable. Major public cloud providers have easy API access to their object store
products and can be used for economical storage choices.

e (Case 4: Data Lake

There are many types of data in a distributed system. An object store-backed data lake
provides a good place for different business lines to dump their data for later analytics or
machine learning. The efficient reads and writes of the object store facilitate more steps
down the data processing pipeline, including ETL(Extract-Transform-Load) or
constructing a data warehouse.

e Case 5: Internet of Things (loT)

loT sensors produce all kinds of data. An object store can store this type of time series
and later run analytics or Al algorithms on them. Major public cloud providers provide
pipelines to ingest raw loT data into the object store.

e C(Case 6: Backup and Recovery

An object store can be used to store database or file system backups. Later, the backups
can be loaded for fast recovery. This improves the system’s availability.

Over to you: What did you use object store for?

API Vs SDK!

m Vs - @ blog.bytebytego.com

A P| a (To Communicate between Apps / Services)

HTTP METHOD END POINT
GET / POST/ URL (where
PUT / DELETE APl Hosted)
GET hﬂps.//gmap.onm/}son

Delivery LS json / XML Locations
APP / N MapsAP Data

‘statuscode i SRR

S‘DK "B (Tool Box to Build Apps) code APIS Libs

Pick N pull
A= o

Developers K KOﬂIn
- Programming
language
- /' -aﬁs _____________
£ < Integration
Y WO e) S
- i ey - >
Builld Release < < a
— .
e Delivery Web API Logﬁgns
App

API (Application Programming Interface) and SDK (Software Development Kit) are essential tools
in the software development world, but they serve distinct purposes:

API:

An APl is a set of rules and protocols that allows different software applications and services to
communicate with each other.

1. It defines how software components should interact.
2. Facilitates data exchange and functionality access between software components.

3. Typically consists of endpoints, requests, and responses.

SDK:

An SDK is a comprehensive package of tools, libraries, sample code, and documentation that
assists developers in building applications for a particular platform, framework, or hardware.

1. Offers higher-level abstractions, simplifying development for a specific platform.

2. Tailored to specific platforms or frameworks, ensuring compatibility and optimal
performance on that platform.

3. Offer access to advanced features and capabilities specific to the platform, which might
be otherwise challenging to implement from scratch.

The choice between APIs and SDKs depends on the development goals and requirements of the
project.

Over to you:

Which do you find yourself gravitating towards — APIs or SDKs — Every implementation has a
unique story to tell. What's yours?

A picture is worth a thousand words: 9 best practices for developing

microservices

| Microservice Best Practices

blog.bytebytego.com

o a o
AR .. A=
Separate data store K“l:v:‘l,?f m:::‘;lm' 5;::'%'::22“ \:o:
ServiceA | Service B | GG Level3 Service A —’@é

L st Iml Level 4 L]"_'W@.
g g | ServiceC | Level 3 sevicec — ()
h y - £ 4
o “ O
s 2O SaeCame

Single responsibility Treat servers as stateless

| fZ\:',— Service A —= w I@
=) l%‘"
SericeC —> ﬁ-

AN

Deploy into containers

Services

& 4

(s) (o)
N N)
Micro frontend Or':r::x:g

i. ﬁwn"r_ | ’o g API odel
= JQfsm_, P /,_n
| API Gateway | ur 7 @ ~!node2

rg : Kubemstax
| payments orders cul Master node3

b y

A

When we develop microservices, we need to follow the following best practices:

Use separate data storage for each microservice
Keep code at a similar level of maturity

Separate build for each microservice

Assign each microservice with a single responsibility
Deploy into containers

Design stateless services

Adopt domain-driven design

Design micro frontend

Orchestrating microservices

LNV EWNRE

Proxy Vs reverse proxy

Forward Proxy v.s. Reverse Proxy

Forward Proxy

+ Avoid browsing restrictions
- Block access to certain content

§) ByteByteGo.com

Reverse Proxy

* Load balancing
- Protect from DDos attacks

- Protect user identity online Cache static content

- Encrypt and decrypt SSL communications

LAN

User A User B UserC

User A User B User C 1
T e

EEE Internet

Forward Proxy l

EEE N NGINX

Reverse

/ Internet \ / Proxy

Web Server A

Web Server B Web Server A Web Server B

LAN

A forward proxy is a server that sits between user devices and the internet. A forward proxy is
commonly used for:

- Protect clients
- Avoid browsing restrictions
- Block access to certain content

A reverse proxy is a server that accepts a request from the client, forwards the request to web
servers, and returns the results to the client as if the proxy server had processed the request. A
reverse proxy is good for:

- Protect servers

- Load balancing

- Cache static contents

- Encrypt and decrypt SSL communications

Git Vs Github

=9 @B,tzsz)t
9 = =

> =
o Sepn e e Installed locally.

system for tracking DEVELOP

i eharaen WORKS OFFLINE @
e =

can be used with Branching model

multiple makes multiple UL

e Rerore Rerosimoniss o Feasibie
Record changes in
code locally
Uplead code’change
ta remmote repe.
Fetches merge remote
ED .o tccaty
@ Request code review R
Merge
¢ Create personal copy
@ of repository.
@ combine changes from
one branch to ather,

m Copy remote repository to
lacal machine.

@ Rewrite commit histery

to streamline it.

O

Git remote
repasitory hosting
service,

e web based
Cloud Platform for

collaboration

9 Centralised Code
storage

o Additional features
-Project Management
-€1/¢D ate.

Dive into the fascinating world of version control.

First, meet Git, a fundamental tool for developers. It operates locally, allowing you to track
changes in your code, much like taking snapshots of your project's progress. This makes
collaboration with your team a breeze, even when you're working on the same project.

Now, let's talk about GitHub. It's more than just a platform; it's a powerhouse for hosting Git
repositories online. With GitHub, you can streamline team collaboration and code sharing.

Learning Git and GitHub is a fundamental part of software engineering, so definitely try your
best to master them 4’

Which latency numbers should you know

Please note those are not precise numbers. They are based on some online benchmarks (Jeff
Dean’s latency numbers + some other sources).

Latency Numbers You Should Know) ByteByteGo.com

1 wns L1 Cache

10 wns L= cache
100 ns RAM aAccess
1 =T Redis read a
ps
10 us [Send data over network Memeached send data over 1Gbps Mtwarka.
100 ms read from SSp RoeRsDB read g pocksDB
1 ms Database insert - Postgresql stcrt@
10 ms HDD disk seek
Remote Zoom call
100 ws packet CA->NL->CA T c
1€ Grafana refresh interval o
10 s retry/refresh interval
e L|1andL2caches:1ns,10ns

E.g.: They are usually built onto the microprocessor chip. Unless you work with
hardware directly, you probably don’t need to worry about them.

RAM access: 100 ns

E.g.: It takes around 100 ns to read data from memory. Redis is an in-memory data store,
so it takes about 100 ns to read data from Redis.

Send 1K bytes over 1 Gbps network: 10 us

E.g.: It takes around 10 us to send 1KB of data from Memcached through the network.
Read from SSD: 100 us

E.g.: RocksDB is a disk-based K/V store, so the read latency is around 100 us on SSD.
Database insert operation: 1 ms.

E.g.: Postgresql commit might take 1ms. The database needs to store the data, create
the index, and flush logs. All these actions take time.

e Send packet CA->Netherlands->CA: 100 ms
E.g.: If we have a long-distance Zoom call, the latency might be around 100 ms.
e Retry/refresh internal: 1-10s

E.g: In a monitoring system, the refresh interval is usually set to 5~10 seconds (default
value on Grafana).

Notes:
1 ns = 107-9 seconds
1 us = 107-6 seconds = 1,000 ns

1 ms = 107-3 seconds = 1,000 us = 1,000,000 ns

Eight Data Structures That Power Your Databases. Which one should
we pick?

The answer will vary depending on your use case. Data can be indexed in memory or on disk.
Similarly, data formats vary, such as numbers, strings, geographic coordinates, etc. The system
might be write-heavy or read-heavy. All of these factors affect your choice of database index
format.

8 Data Structures That Power Your Databases @ ByteByteGo_com
Types I1lustration Use Case Note
Skiplist EEE In-memory used in Redis
head
i —= bic —= hello =0
% __..:n+o" Most common
Hash index 2 - twitter — uber —+O In-memory in-memory
g index solution

Index file ——
cichls Immutable data

Key Oftses. Liingfh 4= ==
[@aa | o0 [4 ‘|u|b|;|r|l|wi|l|t|a|r|m|“' . structure.
SSTable e .. Disk-based Seldom used
R AP R — alone
Memory Dk ’ High write
LSM tree Shkiplist SStable 1 E8=S emfry throughput. Disk
] SStable 2 E5 w0 Disk compaction may
SStable 3 == impact performance
Most popular
B-tree Disk-based database index
[1)12)5] implementation
is :
L"'ﬂ;% Used in document
Inverted index : Search document search engine
] such as Lucene
Index
0
e ‘\QQ@__HH
e e o8 I8 6, BETE. Used in string
Suffix tree uf.\‘ M&i’ & & 8 Q¢ Search string search, such as
[g8 i 1
" j opegos | bﬂeg_?‘ss 1 z', mg:: ‘& oyteses 1 string suffix match

shape

] Search Such as the
R-tree _F—Q multi-dimension nearest neighbor

The following are some of the most popular data structures used for indexing data:

e Skiplist: a common in-memory index type. Used in Redis
e Hash index: a very common implementation of the “Map” data structure (or
“Collection”)

SSTable: immutable on-disk “Map” implementation

LSM tree: Skiplist + SSTable. High write throughput

B-tree: disk-based solution. Consistent read/write performance
Inverted index: used for document indexing. Used in Lucene

Suffix tree: for string pattern search

R-tree: multi-dimension search, such as finding the nearest neighbor

This is not an exhaustive list of all database index types.
Over to you:

1. Which one have you used and for what purpose?
2. There is another one called “reverse index”. Do you know the difference between
“reverse index” and “inverted index”?

How Git Commands Work

Almost every software engineer has used Git before, but only a handful know how it works.

How Git Commands work @ ByteByteGo.com
Working Staging Local Remote
Directory, Area Repo Repo
git add git commit git push
git merge git fetch
git pull
git checkout git clone
Local | Remote

To begin with, it's essential to identify where our code is stored. The common assumption is
that there are only two locations - one on a remote server like Github and the other on our local
machine. However, this isn't entirely accurate. Git maintains three local storages on our
machine, which means that our code can be found in four places:

- Working directory: where we edit files

- Staging area: a temporary location where files are kept for the next commit
- Local repository: contains the code that has been committed
- Remote repository: the remote server that stores the code

Most Git commands primarily move files between these four locations.

Over to you: Do you know which storage location the "git tag" command operates on? This
command can add annotations to a commit.

How to store passwords safely in the database and how to validate a

password?
Let’s take a look.

' How to store passwords in DB? [blogeytebytego.com
il IR
/ / - | ® ||
password salt :

\— hash(password + salt)

Store a password

Provided by ‘]
@ client 5 id salt hash

’ y (@ O O
i _

% \ 4
hash(password + salt) » @

Validate a password

Things NOT to do
e Storing passwords in plain text is not a good idea because anyone with internal access
can see them.
e Storing password hashes directly is not sufficient because it is pruned to precomputation
attacks, such as rainbow tables.
e To mitigate precomputation attacks, we salt the passwords.

What is salt?

According to OWASP guidelines, “a salt is a unique, randomly generated string that is added to
each password as part of the hashing process”.

How to store a password and salt?

1.

A salt is not meant to be secret and it can be stored in plain text in the database. It is
used to ensure the hash result is unique to each password.

2. The password can be stored in the database using the following format: hash(password

+ salt).

How to validate a password?
To validate a password, it can go through the following process:

1.
2.
3.

4,

A client enters the password.

The system fetches the corresponding salt from the database.

The system appends the salt to the password and hashes it. Let’s call the hashed value
H1.

The system compares H1 and H2, where H2 is the hash stored in the database. If they
are the same, the password is valid.

Over to you: what other mechanisms can we use to ensure password safety?

What is a database? What are some common types of databases?

First off, what's a database? Think of it as a digital playground where we organize and store

loads of information in a structured manner. Now, let's shake things up and look at the main
types of databases.

=

Name Fﬁm.
% Data is "__""__}

[28 |
Stoved in | me E [
tables Adam | 34)
Fos 36 (4

Has 2 - -

Posls ‘ SELEC - Blocked Sh8

Name | P | Wame [B | es
Rt | 3 [0 O

L Anshy 1

Folt # Two table may

* Giood For Name. have a virlual @ &t‘wo
ghri‘s Alex velation in bebwesn

trangackons Rdam)

.o O i o—

% Data is Stoved
Wk
14 e @ 2% %
0-®
N
* Data w;iu [@\«\ _
velokonship is ®
L) =

Stored as node 3 # qreat for
edges fast seavches
D AT
L DBg
© .v[wl- mer Qoo -
LOocumert X 05)

Fipphicabi a——
) G- VS

Blueries

m column
¥hose dont use Pachion unlike
sSQL

ID T Relakional
et oy, R D o

Daka) 1 # Data models in high
o, mjh:sunsg;q.‘;\mad _--_-_.-—-———__
] og eﬁjm | . %Jed- Relational mapping = ;i Fromest 4o ‘
JORE - ™ o =S5

#Fach object has r I
data & method Telaked 4o | é ——“—“' |

fhat data | - o :

v off) By B e

Object Driented Y DB T R A
behoeen them.] m g [] ame
l....—._ -— am S o GED TER s e D e

Relational DB: Imagine it's like organizing data in neat tables. Think of it as the well-behaved
sibling, keeping everything in order.

OLAP DB: Online Analytical Processing (OLAP) is a technology optimized for reporting and
analysis purposes.

NoSQL DBs: These rebels have their own cool club, saying "No" to traditional SQL ways. NoSQL
databases come in four exciting flavors:

- Graph DB: Think of social networks, where relationships between people matter most.
It's like mapping who's friends with whom.

- Key-value Store DB: It's like a treasure chest, with each item having its unique key.
Finding what you need is a piece of cake.

- Document DB: A document database is a kind of database that stores information in a
format similar to JSON. It's different from traditional databases and is made for working
with documents instead of tables.

- Column DB: Imagine slicing and dicing your data like a chef prepping ingredients. It's
efficient and speedy.

Over to you: So, the next time you hear about databases, remember, it's a wild world out there -
from orderly tables to rebellious NoSQL variants! Which one is your favorite? Share your
thoughts!

How does Docker Work? Is Docker still relevant?

We just made a video on this topic.

l How does (11511 Work ?

@ blog.bytebytego.com

= o= . I _
- (op

Docker

: Docker build Docker pull Docker run
Client [i |
e, Y J
[Daemon J"\

Containers

- . ~Build==p>
® oo @ WD

Docker's architecture comprises three main components:
e Docker Client

This is the interface through which users interact. It communicates with the Docker
daemon.

e Docker Host

Here, the Docker daemon listens for Docker APl requests and manages various Docker
objects, including images, containers, networks, and volumes.

® Docker Registry

This is where Docker images are stored. Docker Hub, for instance, is a widely-used public
registry.

Let’s take the “docker run” command as an example.
1. Docker pulls the image from the registry.
Docker creates a new container.
Docker allocates a read-write filesystem to the container.
Docker creates a network interface to connect the container to the default network.
Docker starts the container.

vk wnN

Is Docker still relevant? Watch the whole video here: https://Inkd.in/eKDkka _m

https://lnkd.in/eKDkkq_m

Docker vs. Kubernetes. Which one should we use?

| Docker Vs Kubernetes (P blog bytebytego.com

/ Docker \ / Kubernetes \
App
—E Framework -
» Libraries (>

@' docker

Operating System
\ One daemon per host 0S j \ Many Hosts per Cluster /

What is Docker?

Docker is an open-source platform that allows you to package, distribute, and run applications
in isolated containers. It focuses on containerization, providing lightweight environments that
encapsulate applications and their dependencies.

What is Kubernetes?

Kubernetes, often referred to as K8s, is an open-source container orchestration platform. It
provides a framework for automating the deployment, scaling, and management of
containerized applications across a cluster of nodes.

How are both different from each other?
Docker: Docker operates at the individual container level on a single operating system host.

You must manually manage each host and setting up networks, security policies, and storage for
multiple related containers can be complex.

Kubernetes: Kubernetes operates at the cluster level. It manages multiple containerized
applications across multiple hosts, providing automation for tasks like load balancing, scaling,
and ensuring the desired state of applications.

In short, Docker focuses on containerization and running containers on individual hosts, while
Kubernetes specializes in managing and orchestrating containers at scale across a cluster of
hosts.

Over to you: What challenges prompted you to switch from Docker to Kubernetes for managing
containerized applications?

Writing Code that Runs on All Platforms

Developing code that functions seamlessly across different platforms is a crucial skill for modern
programmers.

The need arises from the fact that users access software on a wide range of devices and
operating systems. Achieving this universal compatibility can be complex due to differences in
hardware, software environments, and user expectations.

Writing Code that Runs on All Platforms

B blog.bytebytego.com

P Trade-offs T

Context Description ade-offs To
Consider

P JavaScript

st =Java Choose a cross- Constraints on speed,

platform programming = memory, syntax, and
language or interpreter. | libraries

K Kotlin

Cross Platform Language |
& React Native ¢

O o -~

Electron

Enables writing code
once for multiple
platforms

Constraints on
customization and
code overhead

Cross Platform Framework
Dagger Dependency

b ; i"J"S‘C'“OT< Isolate platform-specific May increase
€ spring frameworks | 046 into modules or performance overhead

Abstract Platform Specific CaSS€s and code complexity
Code |
a Selenium Z] Demands time and
; = Use emulators and ;
. . resources for testing,
simulators to simulate . =
: ; revealing compatibility
XCTest espresso different environments

. concerns
Testing Across Platforms

| & . ; Requires multiple
t) . é i18next Start with an adaptable language files, possibly

gettext code plan for multiple = .
raising maintenance

Internationalization and Ianguages and regions work
Localization

S stackoverflow
reddit €
@ : GitHub
r/programming Discussions
_ Community and Forums

Engage in cross-
platform dev
communities for
guidance and sharing

Over-reliance on
community support can
hinder problem-solving

4

Creating code that works on all platforms requires careful planning and understanding of the
unique challenges presented by each platform.

Better planning and comprehension of cross-platform development not only streamline the
process but also contribute to the long-term success of a software project.

It reduces redundancy, simplifies maintenance, ensures consistency, boosting satisfaction and
market reach.

Here are key factors for cross-platform compatibility

Over to you: How have you tackled cross-platform compatibility challenges in your projects?
Share your insights and experiences!

HTTP Status Code You Should Know

We just made a YouTube video on this topic. The link to the video is at the end of the post.

GET, HEAD, PUT, POST

Sucessful 200 OK =
H‘ 201 Created (for POST)
204 No Content

Redirection [=—H
301 Moved Permanently —>
302 Found (temporarily)

Incorrect Request

\

Client Error 2 400 Bad Request
401 Unarthorized ——

403 Forbidden
404 Not Found

v

= 500 Internal Server Error
Server Error Ggge 501 Not Implemented __—"
502 Bad Gateway
503 Service unavailable
504 Gateway Timeout

The response codes for HTTP are divided into five categories:
Informational (100-199)

Success (200-299)

Redirection (300-399)

Client Error (400-499)

Server Error (500-599)

These codes are defined in RFC 9110. To save you from reading the entire document (which is
about 200 pages), here is a summary of the most common ones:

Over to you: HTTP status code 401 is for Unauthorized. Can you explain the difference between
authentication and authorization, and which one does code 401 check for?

Watch the whole video here: https://Inkd.in/eZVihXDt

https://lnkd.in/eZVjhXDt

Docker 101: Streamlining App Deployment

“

('c? BgteBgt!Gu%:)

. ocker =

Running mulliple copies

Dockex Image \iith{: Teolation g+ > (Sewver provides Scalability
Packages Rpplication and Tis oo r . s —o
dependencies Samnlj -‘_*'-“—'-_ S ’:,-..—-v
e, ey Virtual isslation d
SR RRELIEE S S =S ® _,
" T = = B
1 . 1" . , o+ pect
i e i " —o il
i “ + :: ———
I Virtus) ietion
i @y @ \o, T o] Fe
i Dapendencies |1 i+te e e
s "_'__m...‘.::; | o i

e S ——
\ = !
® .

game CPU Ii e Dapendencies |
A .:.‘:::.-_:.:.;__‘._{,‘,
| ’ . 1;_‘ 3 sems W
Virtual Machines uses Tsoiation of o A g - Y !
Hardware iy o8 j V l‘ﬂf_—j v &m ..
. Y "'.,‘. \ i:' : only with &y
CPvad ""Im'_‘_l’ Bl AL wsL \48;",51_

G

P——— ——
wi ik w&m unning
$docke-r build i; teao i $ docker yun P Shate
s
e LY e
G| O e | S

] 3 ¥ ¥ Dne
w Dockes Installed? ﬁ Dockerfile # s
= ; i docker images
: " Contai # Dockerfile containg ek of $.
Run hello-world ner instrucHons abouk how 4o # For pushing bullt image to hub
.8 build docker Image.. nam i be ‘:-h_ .9
°e * docker vun_ hello-world i . e e o> »
4 —_— $d«¥er build -t <nq|¥:) . : -
H er buld -t yBhid/too =
docker | ieling a.mru-gnm,\ it e e S 5 T [£ 05
e From filename Dockectnd InGament direciory $:J.:.r_ker push r@hi%/foo

Fed up with the "it works on my machine" dilemma? Docker could be your salvation!
Docker revolutionizes software development and deployment. Explore the essentials:

1. Bundle Everything: Docker packs your app and its dependencies into a portable
container — code, runtime, tools, libraries, and settings — a tidy, self-contained package.

2. Virtual Isolation: Containers offer packaging and isolation. Run diverse apps with
different settings on a single host without conflicts, thanks to Linux namespaces and
cgroups.

3. Not VMs: Unlike resource-heavy VMs, Docker containers share the host OS kernel,
delivering speed and efficiency. No VM overhead, just rapid starts and easy
management.

4. Windows Compatibility: Docker, rooted in Linux, works on Windows too. Docker Desktop
for Windows uses a Linux-based VM, enabling containerization for Windows apps.

Git Merge vs. Rebase vs. Squash Commit

| Git Merge vs. Git Rebase) blog.bytebytego.com
Original bm:h \
v
o :o " . feature
br'alnch
¢
" 6—0—0 p
After "git merge" _— \
bmlnch
v
o :o > ¢ > D > G
1
e Tgrgg feature
\ G._,o_,e‘_, -<"branch /
main
After "git rebase" branch
y
o :o > C > D —=>F —> F —> G
A
git rebase
7

b J

What are the differences?

When we merge changes from one Git branch to another, we can use ‘git merge’ or ‘git rebase’.
The diagram below shows how the two commands work.

Git Merge

This creates a new commit G’ in the main branch. G’ ties the histories of both main and feature
branches.

Git merge is non-destructive. Neither the main nor the feature branch is changed.

Git Rebase

Git rebase moves the feature branch histories to the head of the main branch. It creates new
commits E’, F/, and G’ for each commit in the feature branch.

The benefit of rebase is that it has linear commit history.
Rebase can be dangerous if “the golden rule of git rebase” is not followed.
The Golden Rule of Git Rebase

Never use it on public branches!

Cloud Network Components Cheat Sheet

Network components form the backbone of cloud infrastructure, enabling connectivity,
scalability, and functionality in cloud services.

N ETWO R K I N G C H EAT S H E ET @ blog.bytebytego.com

Network
Peering

Content
Distribution

VPC Peering

Gilobal
Accelerator

%VNet Peering

ﬁ Front Door

VPC Network
Peering

3

Global Load
| Balancer

Element bl A Azure | DGoogeCioud | il
Virtual Private |3 Virtual i Virtual Private . Virtual Private
Cloud 2 Private Cloud | - Virtual Network @ Cloud # Cloud
Subnetwork Subnet % Subnet C{ Subnetwork @5 Vswitch

Y Elastic Load Cloud Load Server Load
Load Balancer |[@= Bkincer (@ Load Balancer Balancing Balancer

. Web Application Web Application -+ [~ Web Application

Firewall Firewall Firewall @ Cloud Armor [) Firewall
Content ; .

- Content Delivery| ~ Content Delivery
Delivery _‘.Network <@y Cloud CDN x Network
Network
Dedicated Direct A -3 -Cloud «*, Express
Connectivity Connect %Expressﬁoule]- Interconnect ¢ Connect
Virtual Private <= VPN N .

Network E! Connection 77 VPN Gateway '0{ Cloud VPN @ VN ey
DDoS = . DDoS @ Anti
it g 8 Shield Protactisi @ Cloud Armor u@; Anti-DDoS
Domain Name FE Route 53 @©ons B CloudDNS | ONE DNS
System - -
Network @ CloudWatch ®Azure Monitor |Zga Cloud @ Log Service
Monitoring Monitoring
Security &) Security Groups ;’Security Groups | == Firewall Rules =F Security Groups
Groups i o

[
Route Tables |~ Route Tables J& Route Tables | N Routes @@é Route Table

@7 VPC Peering

Global
Accelerator

These components include routers, load balancers, and firewalls, which ensure data flows
efficiently and securely between servers and clients.

Additionally, Content Delivery Networks (CDNs) optimize content delivery by caching data at

edge locations, reducing latency and improving user experience.

In essence, these network elements work together to create a robust and responsive cloud
ecosystem that underpins modern digital services and applications.

This cheat sheet offers a concise yet comprehensive comparison of key network elements
across the four major cloud providers.

Over to you: How did you tackle the complexity of configuring and managing these network
components?

SOAP vs REST vs GraphQL vs RPC

The diagram below illustrates the API timeline and API styles comparison.

API Architectural Styles Comparison

1993 1999 2005 2015
RDA SOAP JSON-RPC GRAPHQL
1991 1998 | 2000 2007 2016
CORBA ODATA

XML-RPC | REST

" gRPC

Source: altexsoft

enveloped message compliance with six
structure architectural constraints achewma & fype system: | becal procedure call
2 JSON, XML,
XML only L ;rsor:e,;w ML, plain ISON Protobuf, Thrift,
FlatBuffers
Difficult Easy Medium Easy
Small Large Growing Large
- me:vﬂ gateways . - qom;::n: |;I.Il1sd action-
- identity managemen s orien
- CRM solutions - public APIs 2 :‘onn?:dix”r:t aiis - high performance
- financial and - simple resource-driven apps| _ -s:yi i3 communication in
| telecommunication services HECTH-SEENE massive micro-services
) - legacy system support systems

Over time, different APl architectural styles are released. Each of them has its own patterns of

standardizing data exchange.

You can check out the use cases of each style in the diagram.

10 Key Data Structures We Use Every Day

10 Data Structures Used in Daily Life) ByteByteGo.com
Data Structure Illustration Use Cases
List MMM Twitter feeds
Array 01 2 3 Math operations

il N Nl it Large data sets

Stack S Undo/Redo of word editor
Printer jobs

Vieije 2 8B 8 B User actions in game

Heap 7) Task scheduling

Tree HTML document

AI decision

A 2 N Search string in

ffix Tr 5wt .
Su ee oL s document

Friendship tracking

Grapa e Path finding
R-tree Q—D Nearest neighbour
. » = > O
___» —»0 :
Hash Table E > @ ge. O Caching systems
-

- list: keep your Twitter feeds

- stack: support undo/redo of the word editor

- queue: keep printer jobs, or send user actions in-game
- hash table: cashing systems

- Array: math operations

- heap: task scheduling

- tree: keep the HTML document, or for Al decision

- suffix tree: for searching string in a document

- graph: for tracking friendship, or path finding

- r-tree: for finding the nearest neighbor
- vertex buffer: for sending data to GPU for rendering

Over to you: Which additional data structures have we overlooked?

What does a typical microservice architecture look like? &

The diagram below shows a typical microservice architecture.

| Microservice Architecture ByteByteGo
SR Clent

F

Load
Balancer

Identity

API Gateway Provider

o6
_______________________________ L i

' [RESTAPI RESTAPT | ' ¢ REST API : Service Registry &
. - ' Discovery

. |Service A.1 Service A.2| | | Service B.1 '

l geata X REST API :

') ' L Management

: Setvica 4.3 1 |serviceB2| !

N Domain A £ ¢

Microservices

e Load Balancer: This distributes incoming traffic across multiple backend services.

® CDN (Content Delivery Network): CDN is a group of geographically distributed servers
that hold static content for faster delivery. The clients look for content in CDN first, then
progress to backend services.

® APl Gateway: This handles incoming requests and routes them to the relevant services. It
talks to the identity provider and service discovery.

e Identity Provider: This handles authentication and authorization for users.

e Service Registry & Discovery: Microservice registration and discovery happen in this
component, and the API gateway looks for relevant services in this component to talk to.

e Management: This component is responsible for monitoring the services.

e Microservices: Microservices are designed and deployed in different domains. Each
domain has its own database. The API gateway talks to the microservices via REST APl or
other protocols, and the microservices within the same domain talk to each other using
RPC (Remote Procedure Call).

Benefits of microservices:
- They can be quickly designed, deployed, and horizontally scaled.
- Each domain can be independently maintained by a dedicated team.

- Business requirements can be customized in each domain and better supported, as a
result.

Over to you:
1. What are the drawbacks of the microservice architecture?

2. Have you seen a monolithic system be transformed into microservice architecture? How
long does it take?

My recommended materials for cracking your next technical interview

My Recommended D blgbytebytego.com
VN ERIENS

‘ | SYSTEM
CODING DESIGN

SYSTEM

SYSTEM
DESIGN DESIG
INTERVIEW M

L Ll |

Leetcode Neetcode Cracking the System Design Grokking the Designing Data
coding interview Interview Books system design Intensive
interview by Application
Design Guru

BEHAVIORAL 00D
INTERVIEW INTERVIEW
3’
Bl >
Tech Interview A Life Engineered STAR Method Interviewr- Educative Head First

Handbook (¥YT) eady Design
Patterns Book

MOCK APPLY
INTERVIEW FOR JOBS

Q©\\\ in M

Interviewing.io Pramp Meetapro Linkedin Monster

Coding

- Leetcode
- Cracking the coding interview book
- Neetcode

System Design Interview

- System Design Interview book 1, 2 by Alex Xu, Sahn Lam
- Grokking the system design by Design Guru
- Design Data-intensive Application book

Behavioral interview

- Tech Interview Handbook (Github repo)
- A Life Engineered (YT)
- STAR method (general method)

00D Interview

- Interviewready
- 0OO0D by educative
- Head First Design Patterns Book

Mock interviews

- Interviewingio
- Pramp
- Meetapro

Apply for Jobs

- Linkedin
- Monster
- Indeed

Over to you: What is your favorite interview prep material?

Uber Tech Stack

This post is based on research from many Uber engineering blogs and open-source projects. If
you come across any inaccuracies, please feel free to inform us. The corresponding links are

added in the comment section.

I Tech Stack @ blog.bytebytego.com

Frontend Backend
Service Mesh Service Database
NGINX Ke @
DocStore
. %%
.. H3
Base Web RIB -Cross , THRIFT) (‘D
Platform spring memSQL
: . boot :
9 RPC presto -
Swift CC&dence
@ redis
UACt -
L y \ i L N A elasticsearch 4

Infrastructure

Data Storage

i ThemlmEp g:?i. Spa WEazel | [pnmii

Q}nu'dl . @)Dmmj o Peloton
2

marmaray

%y Parquet

" Kraken
A ALLUXIO Apache Kafka uMetric

i \ uMonitor
. @ &Flink

pinot ,
TerraBlob @ M3 Crane
A b R vy L o

Web frontend: Uber builds Fusion.js as a modern React framework to create robust web
applications. They also develop visualization.js for geospatial visualization scenarios.

Mobile side: Uber builds the RIB cross-platform with the VIPER architecture instead of MVC.
This architecture can work with different languages: Swift for iOS, and Java for Android.

Service mesh: Uber built Uber Gateway as a dynamic configuration on top of NGINX. The service
uses gRPC and QUIC for client-server communication, and Apache Thrift for API definition.

Service side: Uber built a unified configuration store named Flipr (later changed to UCDP), H3 as
a location-index store library. They use Spring Boot for Java-based services, uAct for
event-driven architecture, and Cadence for async workflow orchestration.

Database end: the OLTP mainly uses the strongly-consistent DocStore, which employs MySQL
and PostgreSQL, along with the RocksDB database engine.

Big data: managed through the Hadoop family. Hudi and Parquet are used as file formats, and
Alluxio serves as cache. Time-series data is stored in Pinot and AresDB.

Data processing: Hive, Spark, and the open-source data ingestion framework Marmaray.
Messaging and streaming middleware include Apache Kafka and Apache Flink.

DevOps side: Uber utilizes a Monorepo, with a simplified development environment called
devpod. Continuous delivery is managed through Netflix Spinnaker, metrics are emitted to
uMetric, alarms on uMonitor, and a consistent observability database M3.

Top 5 Caching Strategies

When we introduce a cache into the architecture, synchronization between the cache and the
database becomes inevitable.

| Top 5 Caching Strategies) blog.bytebytego.com
F 2
€D read
Cache Aside ‘
[{ @ cache miss
5 [tatat Cache
: ; @ ©) update cache A
- 1. update logic is on : 1 P s 1
‘application level, easyto _3';;;; ERERe MR e n Application @ codps
_'?'_m"'em““] © 2, data may be stale if DB is N fea
- cache only contains what - updated direct! t
;me application requests for - Y o et data
: 9 Database
J
r 1
o read :
Read Through — @ cache miss
[© update cache
i i M o 0N -‘.Ei Cache
i1, appli:al'_iun lagic is simple data access logic is in the o get data 0 read DB
;2;‘;3" Ieasuly scale t:? 'e‘;ds " cache, needs to write a Application
S O one quary S the * piugin to access DB B
Database }
9 read from cache
Write Around (if exists) a
[I o update cache
L Pros J { Cons oy P P
read from
i 1. higher write latency i ﬁ o
:1. the DB is the source of because data is written to DB Aot evlstin cache)
“truth first : Application *
: 2. lower read latency 2. the data in the cache may : L o wrikeiDE
£ be stale i
Database
Write Back [‘
m m tets? cwrlte constantly Cache
1. lower write latency 1. there can be data loss If @ :'r:Ewt':)”EDS R
: 2. lower read latency the cache is down Application
i 3. the cache and DB are 2. infrequent data is also
;evenwally consistent stored in the cache
: Database
J
Write Through e
f €D write to cache
m m 12} Cache
t write to DB
. 1. writes have higher latency : immediately’
: 1. reads have lower latency :: because they need to wait for: Application
: 2. the cache and DB are in the DB writes to finish ¥
isync 2. infrequent data is also
: stored in the cache
Database
J

Let’s look at 5 common strategies how we keep the data in sync.

e Read Strategies:

Cache aside
Read through

® \Write Strategies:

Write around

Write back
Write through

The caching strategies are often used in combination. For example, write-around is often used
together with cache-aside to make sure the cache is up-to-date.

Over to you: What strategies have you used?

How many message queues do you know?

Types of Message Queues @ ByteByteGo.com

Name Simplified Architecture Killing Feature
JMS

ActiveMQ Publisher +—— AMQP —= Broker - = Subscriber Rich protocols
MaTT

AWS
Message ordering and
Amazol"l SQS Publisher =——123 ——= 5Qs =123 —= Subscriber exact-once consumpﬁon

RabbitMQ Publisher Subscribar Message routing
Kafka Publisher e bacihar High throughput and
reliability

Like a post office, a message queue helps computer programs to communicate in an organized
manner. Imagine little digital envelopes being passed around to keep everything on track. There
are few key features to consider when selecting message queues:

Speed: How fast messages are sent and received
Scalability: Can it grow with more messages
Reliability: Will it make sure messages don’t get lost
Durability: Can it keep messages safe over time
Ease of Use: Is it simple to set up and manage
Ecosystem: Are there helpful tools available
Integration: Can it play nice with other software
Protocol Support: What languages can it speak

Try out a message queue and practice sending and receiving messages until you're comfortable.
Choose an easy one like Kafka and experiment with sending and receiving messages. Read
books or take online courses as you get more comfortable. Build little projects and learn from
those who have already been there. Soon, you'll know everything about message queues.

Why is Kafka fast?

There are many design decisions that contributed to Kafka’s performance. In this post, we’ll
focus on two. We think these two carried the most weight.

1. The first one is Kafka’s reliance on Sequential 1/0.
2. The second design choice that gives Kafka its performance advantage is its focus on
efficiency: zero copy principle.

The diagram below illustrates how the data is transmitted between producer and consumer,
and what zero-copy means.

Why is Kafka Fast? [ByteByteGo

Application Context

1.1 producer Kafka

writes data
Producer _-_‘_'-"""‘--------..,.L Application
/ Buffer

[N
7 | ~
2.2 copy data \'\
/ 2.3.c\lnpy data

/ ﬁ.
0S Buffer Socket Buffer
% N\,

\ 2.4 copy data
13 sync to disk 2.1 load data 'lw

periodically from disk J
3 /
\ / 2.5 send to
_- consumer Consumer
Disk NIC Buffer]

1.2 write o RAM

Read without Kernel Context
Zero copy
Read with
zero copy Application Context
1.1 producer
writes data kathn
Producer ___'"""“-h-..‘ Application
/ Buffer
7

1.2 write o RAM

0S Buffer) Socket Buffer

1.3 sync te disk 3.1 load data i
periodically from disk 3.2 directly copy

e \ . L -
; H ; » Consumer
read flow with ! - consumer
zero copy Disk NIC Buffer

read flow

i without :
: WATROM 2870 EOpY. ' Kernel Context

e Step 1.1-1.3: Producer writes data to the disk

e Step 2: Consumer reads data without zero-copy
2.1: The data is loaded from disk to OS cache
2.2 The data is copied from OS cache to Kafka application
2.3 Kafka application copies the data into the socket buffer
2.4 The data is copied from socket buffer to network card
2.5 The network card sends data out to the consumer

e Step 3: Consumer reads data with zero-copy
3.1: The data is loaded from disk to OS cache
3.2 OS cache directly copies the data to the network card via sendfile() command
3.3 The network card sends data out to the consumer

Zero copy is a shortcut to save multiple data copies between the application context and kernel
context.

How slack decides to send a notification

This is the flowchart of how slack decides to send a notification.

Should we send a
natification?

‘I'Ilruumwu e |
—Ho—] Thresd meam 28 1 m{ Charmel muted? |
1 N
. Yes 2
User in Dn0?]
; Legend
e ki S
Fral ‘
Mo— OnD Overide? - - J
Fran e J

\‘BE—‘ mmmmw’-‘ |
Lisew Stateacson

—M—[BNl meeliong

1
-4 | Channgl notfcation =:n:tau_eva_‘,-'_!|inq| Trraad massage &8
1 pro s ething® [+ 7] pialon? [*5 e mberibod?

v

Ma Mo I;lD

What is The user's channed
matitication pred lor this device 7
|

notification prel for this divice?

l —
e .H,..,hf.,.,m W 1

{ Nothing | | Everyming | | menions | | ootaun | | wnatis e users gloel
|

|
Manﬁunﬂ DM (o) [wm‘ Never |
Ugar pregance . —
e e Tmaﬂmw?
: m nm
o um:.nmi:-d? L b
. i "5 : @rmention?
il 2 : Highiight word
i |
L
os— Liser

—E—

It is a great example of why a simple feature may take much longer to develop than many
people think.

When we have a great design, users may not notice the complexity because it feels like the
feature is just working as intended.

What'’s your takeaway from this diagram?

Source: Slack Engineering Blog

https://slack.engineering/reducing-slacks-memory-footprint/

Kubernetes Tools Ecosystem

Kubernetes, the leading container orchestration platform, boasts a vast ecosystem of tools and
components that collectively empower organizations to efficiently deploy, manage, and scale
containerized applications.

| KUBERNETES TOOLS ECOSYSTEM) blogbytebytego.con

gl -
W :]
CLUSTER “ Hpp (S { |
4)
MANAGEMENT EKS AKS 2 GKE | Calico Cilium Weave MetalLB HETIWGRRING

- iy Iz
“ ==

RANCHER H’_E_:::') r%ﬁ - .l

OpenShift Magnum| Linkerd Contiv Consul Flannel

D) Ao T

MiniKube

5 PLATFORM® canal

RUNTIME : AUTOMATION

W" docker : O t

container [t Ansible Terraform Flux

°Firecrarker)2 kusermaTic [‘] ARM

o @ ES £ Pulumi 9

rkt : CloudFormation AT99CD

» 9)

SECURITY v =4 | OBSERVABILITY
anchore 3% ¢ new relic G ﬂ.
ELK Jaeger

ZABBIX
ydynatrace

{ T P
(k)kube-bench B tri rometheus) Sysdig

& kube-hunter ¢

Kubernetes practitioners need to be well-versed in these tools to ensure the reliability, security,
and performance of containerized applications within Kubernetes clusters.

To introduce a holistic view of the Kubernetes ecosystem, we've created an illustration covering
the aspects of:

Security

Networking

Container Runtime

Cluster Management
Monitoring and Observability
Infrastructure Orchestration

oukwnNE

Over to you:

How have Kubernetes tools enhanced your containerized application management?

Cloud Native Landscape
Many Are Looking for the Definitive Guide on How to Choose the Right Stack

The ANSWER is...

There is no one-size-fits-all guide; it all depends on your specific needs, and picking the right
stack is HARD.

. Cloud Native Landscape

Landscape Card Mode Members Serverless Wasm

Fortunately, at this point in time, technology is usually no longer a limiting factor. Most startups
should be able to get by with most technologies they find. So spend less time on picking the
perfect tech; instead, focus on your customers and keep building.

Over to you all: What do you think is causing this fragmentation in tech stack choices?

Source: CNCF Cloud Native Interactive Landscape

https://landscape.cncf.io/

How does VISA work when we swipe a credit card at a merchant’s
shop?

VISA, Mastercard, and American Express act as card networks for the clearing and settling of
funds. The card acquiring bank and the card issuing bank can be — and often are — different. If
banks were to settle transactions one by one without an intermediary, each bank would have to
settle the transactions with all the other banks. This is quite inefficient.

The diagram below shows VISA’s role in the credit card payment process. There are two flows
involved. Authorization flow happens when the customer swipes the credit card. Capture and
settlement flow happens when the merchant wants to get the money at the end of the day.

HOW does VISA WOI’k" @blog.by‘rebyfego,com

,,,

0. The issuers issue cards

_____ IR to the card holder
8‘“’““-

Card Holder PN

Customer Card Network
| ImImIE
1. Card holder swipes credit card VISA |I

to buy a product

{

1 Bank of America

[\ R . 4. Gard Network sends the
i&

= N transaction to the issuing
nal*

Merchant with E& \\
POS Terminal \ |I|I|I
[o

““““““““ bank for approvals

4.3 The approval/rejection is

] sent back to POS terminal : Citi Bank
i2. POS terminal sends ;

the transaction 3. The acquirer sends the i lssuing Bank |
to the acquirer transaction to Card Network 4.1 The issuer freezes the |
4.2 The approval/rejection is meney fithe trangactlon s :
sent back to the acquirer approve ;

- Authorization Flow |

(Customer receives approval in real time)
Card Acquiring Bank i

Card Network
VISA

2 N , |
FE ! ‘ i Bank of America :
1 s 3. Card Network performs

Merchant with clearing and sends clearing :

POS Terminal file to the issuers H

\=

|
1. The merchant hits "capture"
on POS terminal at end-of-day.
Transactions are sent in batch

Citi Bank

2. The acquirer sends : :
the batch file i Issuing Bank !

|I| Il 4. After the issuer confirms the correctness,
T moneyistransferred rom the issuer

to the acquirer

Card Acquiring Bank

5. Money is transferred to
the merchant bank

SN

Capture and Settlement Flow |

(Merchant receives money at end-of-day) :
Merchant Bank I

e Authorization Flow
Step 0: The card issuing bank issues credit cards to its customers.

Step 1: The cardholder wants to buy a product and swipes the credit card at the Point of
Sale (POS) terminal in the merchant’s shop.

Step 2: The POS terminal sends the transaction to the acquiring bank, which has
provided the POS terminal.

Steps 3 and 4: The acquiring bank sends the transaction to the card network, also called
the card scheme. The card network sends the transaction to the issuing bank for
approval.

Steps 4.1, 4.2 and 4.3: The issuing bank freezes the money if the transaction is approved.
The approval or rejection is sent back to the acquirer, as well as the POS terminal.

e Capture and Settlement Flow

Steps 1 and 2: The merchant wants to collect the money at the end of the day, so they
hit “capture” on the POS terminal. The transactions are sent to the acquirer in batch. The
acquirer sends the batch file with transactions to the card network.

Step 3: The card network performs clearing for the transactions collected from different
acquirers, and sends the clearing files to different issuing banks.

Step 4: The issuing banks confirm the correctness of the clearing files, and transfer
money to the relevant acquiring banks.

Step 5: The acquiring bank then transfers money to the merchant’s bank.

Step 4: The card network clears the transactions from different acquiring banks. Clearing
is a process in which mutual offset transactions are netted, so the number of total
transactions is reduced.

In the process, the card network takes on the burden of talking to each bank and receives
service fees in return.

Over to you: Do you think this flow is way too complicated? What will be the future of payments
in your opinion?

A simple visual guide to help people understand the key
considerations when designing or using caching systems

What tech stack is commonly used for microservices?

Below you will find a diagram showing the microservice tech stack, both for the development
phase and for production.

| Microservice Tech Stack §) blog.bytebytego.com

-
Orenx | (i -

ﬂ h NETFLIX
EUREKA
spring

oot

i
<=1 React

nede =

i ‘ redis == clasticsearch §: kaika

a — Management
Cmgpe ot &Monitoring
Rm gl"uﬁ'rhl w
elastic
THRIFT kubernetes
'GRPC ;
Services
e Gl [A Relational DB Object Store Wide-column DB
T ;
MHSNQ;\L"‘ 'u—,..,.su s.a“m ﬁm

“IPre-production
e Define API - This establishes a contract between frontend and backend. We can use
Postman or OpenAPI for this.

e Development - Node.js or react is popular for frontend development, and
java/python/go for backend development. Also, we need to change the configurations in
the APl gateway according to API definitions.

e Continuous Integration - JUnit and Jenkins for automated testing. The code is packaged
into a Docker image and deployed as microservices.

Production

® NGinx is a common choice for load balancers. Cloudflare provides CDN (Content Delivery
Network).

e AP| Gateway - We can use spring boot for the gateway, and use Eureka/Zookeeper for
service discovery.

e The microservices are deployed on clouds. We have options among AWS, Microsoft
Azure, or Google GCP.

e Cache and Full-text Search - Redis is a common choice for caching key-value pairs.
ElasticSearch is used for full-text search.

e Communications - For services to talk to each other, we can use messaging infra Kafka or
RPC.

® Persistence - We can use MySQL or PostgreSQL for a relational database, and Amazon S3
for object store. We can also use Cassandra for the wide-column store if necessary.

e Management & Monitoring - To manage so many microservices, the common Ops tools

include Prometheus, Elastic Stack, and Kubernetes.

Over to you: Did | miss anything? Please comment on what you think is necessary to learn
microservices.

How do we transform a system to be Cloud Native?

The diagram below shows the action spectrum and adoption roadmap. You can use it as a
blueprint for adopting cloud-native in your organization

I How doWe Adopt Cloud Native ??

C!oud Native Action Spectrum
App Defintion Development

= _ Observability Serverless

Streamir]g& Image
Database Messaging Build

Orchestration & Management

Orchestration Service Discovery

AP| Gateway

s o

Service Proxy

Security
Runtime

: H (AN
5 %)) 1=t BRE
Z, g

Container Cloud Native Tracing
Runtime Network

Cloud
Storage

(Provisioning

@@ = o B B

Contamer Security& Key Engggg?m g Platform
Configuration Reglstry' Compliance Management
- L

?
|
|
1
|
|
|
1
1
|
|

!

Framework

" Cloud Native' Adoption Roadmiap-| -
i

e
"
A lot of companies are at Step 4

“
) Streaming
Observability Networking

\ Software
Messaging

Distribution
i

(6 0 0

/

|
Containerization Orchestration

Service Proxy, Distributed Container
Discovery,Mesh Storage

Regisiration

For a company to adopt cloud native architecture, there are 6 aspects in the spectrum

1. Application definition development
2. Orchestration and management

3. Runtime

4. Provisioning
5. Observability
6. Serverless

Over to you: Where does your system stand in the adoption roadmap?

Reference: Cloud & DevOps: Continuous Transformation by MIT
Redrawn by ByteByteGo

Explaining Sessions, Tokens, JWT, SSO, and OAuth in One Diagram

(1 WG ecsionY Token
oo

.q_,\,_: A ro BB

e Ioemmeas =

Understanding these backstage maneuvers helps us build secure, seamless experiences.

How do you see the evolution of web session management impacting the future of web
applications and user experiences?

Most Used Linux Commands Map

I Most Used Linux Commands Map

O
File and Directory
Management

File Viewing and
Editing

Process
Management
E

@ blog.bytebytego.com

O
System Information

@

O
User and Group
Management
useradd
userdel

usermod

groupadd

Network Configuration Package
and Monitoring Management
e[et |
| dnf |

traceroute

File and Directory Management

File Viewing and Editing

Process Management

System Information

User and Group Management
Network Configuration and Monitoring
Package Management

NouswnN e

Over to you: Which command category did you use the most in your daily Linux tasks?

What is Event Sourcing? How is it different from normal CRUD design?

The diagram below shows a comparison of normal CRUD system design and event sourcing
system design. We use an order service as an example.

CRUD System v.s.(E73nY Sourcing

@ blog.bytebytego.com

o new nmr

(0]
Serrgi%;

Sequencer £ 3 . o

! Event Log Order View

OrderlD | Version | Quantity | State i | EventiD | Type |EventAttribute | [OrderlD|Quantity| State

123 1 5 NEW | b szt | new |omendti Ml 123 | 6

orderld=123,
MODIFY quantity=6

MODIFIED| I

£

123 1 6 MODiFIED] i 322

The event sourcing paradigm is used to design a system with determinism. This changes the
philosophy of normal system designs.

How does this work? Instead of recording the order states in the database, the event sourcing
design persists the events that lead to the state changes in the event store. The event store is an
append-only log. The events must be sequenced with incremental numbers to guarantee their

ordering. The order states can be rebuilt from the events and maintained in OrderView. If the
OrderView is down, we can always rely on the event store which is the source of truth to
recover the order states.

Let's look at the detailed steps.

e Non-Event Sourcing

Steps 1 and 2: Bob wants to buy a product. The order is created and inserted into the
database.

Steps 3 and 4: Bob wants to change the quantity from 5 to 6. The order is modified with
a new state.

e Event Sourcing

Steps 1 and 2: Bob wants to buy a product. A NewOrderEvent is created, sequenced, and
stored in the event store with eventID=321.

Steps 3 and 4: Bob wants to change the quantity from 5 to 6. A ModifyOrderEvent is
created, sequenced, and persisted in the event store with eventlD=322.

Step 5: The order view is rebuilt from the order events, showing the latest state of an
order.

Over to you: Which type of system is suitable for event sourcing design? Have you used this
paradigm in your work?

What is k8s (Kubernetes)?

k8s is a container orchestration system. It is used for container deployment and management.
Its design is greatly impacted by Google’s internal system Borg.

_ What is k8s? §) blog.bytebytego.com

Admin Ul

Pod 1 Pod 2

container 1 container 1

container 2 container 2

blog.bytebytego.com

A k8s cluster consists of a set of worker machines, called nodes, that run containerized
applications. Every cluster has at least one worker node.

The worker node(s) host the Pods that are the components of the application workload. The
control plane manages the worker nodes and the Pods in the cluster. In production
environments, the control plane usually runs across multiple computers, and a cluster usually
runs multiple nodes, providing fault tolerance and high availability.

e Control Plane Components

1. APIServer
The API server talks to all the components in the k8s cluster. All the operations on pods
are executed by talking to the APl server.

2. Scheduler
The scheduler watches pod workloads and assigns loads on newly created pods.

3. Controller Manager
The controller manager runs the controllers, including Node Controller, Job Controller,
EndpointSlice Controller, and ServiceAccount Controller.

4. etcd
etcd is a key-value store used as Kubernetes' backing store for all cluster data.

e Nodes

1. Pods
A pod is a group of containers and is the smallest unit that k8s administers. Pods have a
single IP address applied to every container within the pod.

2. Kubelet
An agent that runs on each node in the cluster. It ensures containers are runningin a
Pod.

3. Kube Proxy
kube-proxy is a network proxy that runs on each node in your cluster. It routes traffic
coming into a node from the service. It forwards requests for work to the correct
containers.

Over to you: Do you know why Kubernetes is called “k8s”? Despite its power, K8s can be
intimidating. What do you think about it?

How does Git Work?
The diagram below shows the Git workflow.

How does Git Work? §J blog.bytebytego.com

Remote
B
Remote Repo
Local Repo Local Repo

Staging Area Staging Area

I =

Working Directory Working Directory

£

- Q
Qe . - |

Developer Developer

5

Git is a distributed version control system.

Every developer maintains a local copy of the main repository and edits and commits to the
local copy.

The commit is very fast because the operation doesn’t interact with the remote repository.
If the remote repository crashes, the files can be recovered from the local repositories.

Over to you: Which Git command do you use to resolve conflicting changes?

How does Google Authenticator (or other types of 2-factor
authenticators) work?

Google authenticator is commonly used for logging into our accounts when 2-factor
authentication is enabled. How does it guarantee security?

Google Authenticator is a software-based authenticator that implements a two-step verification
service. The diagram below provides detail.

There are two stages involved:
e Stage 1- The user enables Google two-step verification

e Stage 2 - The user uses the authenticator for logging in, etc.

Let’s look at these stages.

‘How does Google Authenticator Work? [blog bytebytego.com

Google Authenticator Client
0
N 4. The authentication client scans
g :E. —— the QR code and stores the
o] plE secret key on the client side
= Browser
Baob .= Aop Extension

1. Request a secrel keyto 3. Hsluma

enable your account with in the form o

Google Authenticator a OR code
| otpauth://totpfMyWebsite [Boblsecret=XSCTBOMEYE3TXIIS| |
Authentication :
L Issuer User Secret Key

2. The service generalas a secrat key
and stores in the DB

Database
Stage 1 - User enables two-step authentication service !

Google Authenticator Client | 1. Every 30 seconds, the authenticator client

eoe generates a 6-digit number using the @
(Time-basad One Time Password) algorithm
le— 2. Bob enters the
generated password
Browser ="
et [o App Extensian | Secret Key + Timestamp = 6-digit password :

: 3. The frontend sends the entered 5. The service returns the comparison
: password to the service for result of client-side password and
authentication sarver-side password =
/ [032 511 @
- e -
Authentication , Compare two s
Service v, Ppasswords

s P
4. The service reads the secret key from the DB
and generates the password using the same TOTP
algorithm as the authenticator client

Dotabaas: | ey = SR posenorl |
- 2

Stage 2 - User uses two-step authentication service when logging in |

Stage 1

Steps 1 and 2: Bob opens the web page to enable two-step verification. The front end requests
a secret key. The authentication service generates the secret key for Bob and stores it in the
database.

Step 3: The authentication service returns a URI to the front end. The URI is composed of a key
issuer, username, and secret key. The URI is displayed in the form of a QR code on the web
page.

Step 4: Bob then uses Google Authenticator to scan the generated QR code. The secret key is
stored in the authenticator.

Stage 2

Steps 1 and 2: Bob wants to log into a website with Google two-step verification. For this, he
needs the password. Every 30 seconds, Google Authenticator generates a 6-digit password using
TOTP (Time-based One Time Password) algorithm. Bob uses the password to enter the website.

Steps 3 and 4: The front end sends Bob's password to the backend for authentication. The
authentication service reads the secret key from the database and generates a 6-digit password
using the same TOTP algorithm as the client.

Step 5: The authentication service compares the two passwords generated by the client and the
server, and returns the comparison result to the front. Bob can proceed with the login process
only if the two passwords match.

Is this authentication mechanism safe?
e Can the secret key be obtained by others?

We need to make sure the secret key is transmitted using HTTPS. The authenticator
client and the database store the secret key, and we need to ensure the secret keys are
encrypted.

e Can the 6-digit password be guessed by hackers?

e No. The password has 6 digits, so the generated password has 1 million potential
combinations. Plus, the password changes every 30 seconds. If hackers want to guess
the password in 30 seconds, they need to enter 30,000 combinations per second.

Over to you: What are some of the other 2-factor authentication devices you used?

laaS, Paa$, Cloud Native... How do we get here?

The diagram below shows two decades of cloud evolution.

| 2 Decades of Cloud Evolution

vimware

&
Shun || [
Physical Server
__I_:T_T‘.;ﬁ?'_'.______
AN /
N N

Physical Server
Notitig

I'mer-m| Providar rnunage|

HEROKU

L

AL

[epication |
Rurtime
Operaling System
Physical Server

Networkng |

blog.bytebytego.com

N

openstack.

open-Source s I

e g e
Co— —— —] —

L

(e

P [Tl]
¢ [fou manage] [Provider manage | |

2001 - VMWare - Virtualization via hypervisor
2006 - AWS - laaS (Infrastructure as a Service)
2009 - Heroku - PaaS (Platform as a Service)
2010 - OpenStack - Open-source laaS

2011 - CloudFoundry - Open-source PaaS
2013 - Docker - Containers

2015 - CNCF (Cloud Native Computing Foundation) - Cloud Native

Over to you: Which ones have you used?

)
T
CLOUD FOUMDRY A
T e

P DR -]]
Y _
T8 b

-y" [ew | [

i [pantainer [Container| |

i | Conainer Engine |

docker : i

Physical Sarver

| Metworking |
il P
\(i

] ctoun naTvE P,
06

L4 4 d

E!_Em. aa—.--.
P Sl

How does ChatGPT work?

Since OpenAl hasn't provided all the details, some parts of the diagram may be inaccurate.

How does ChatGPT-like System Work? §) ByteByteGo.com
(@ Training i
Parameters:175B
Training tokens:300B
Vocab size: ~50K
i Coninty th
: . — | to four. | -
Preiialcing two plus two is : equal to four
Internet data(300B tokens)
i optimize using
i collect data train a t ing i
- { and fine-tune reward model (PPO algorithm) :
Stage 2: : Finetuned -
Fine-tuning H GPT :
R AM PPO
i Demonstration| .
ol
& =
@ Answer a prompt
a new prompt
LeetCode: longest common string
1
2
3.N
ChatGPT Model
v
@ 6.N Template response generation ‘
6.Y
A
Faepns longest common string is the Sorry,l am nc:t tralnef! to provide
problem of... medical advise.
. J

1. Training. To train a ChatGPT model, there are two stages:

- Pre-training: In this stage, we train a GPT model (decoder-only transformer) on a large
chunk of internet data. The objective is to train a model that can predict future words
given a sentence in a way that is grammatically correct and semantically meaningful

similar to the internet data. After the pre-training stage, the model can complete given
sentences, but it is not capable of responding to questions.

- Fine-tuning: This stage is a 3-step process that turns the pre-trained model into a
guestion-answering ChatGPT model:

Collect training data (questions and answers), and fine-tune the pre-trained
model on this data. The model takes a question as input and learns to generate
an answer similar to the training data.

Collect more data (question, several answers) and train a reward model to rank
these answers from most relevant to least relevant.

Use reinforcement learning (PPO optimization) to fine-tune the model so the
model's answers are more accurate.

2. Answer a prompt

Step 1: The user enters the full question, “Explain how a classification algorithm
works”.

Step 2: The question is sent to a content moderation component. This
component ensures that the question does not violate safety guidelines and
filters inappropriate questions.

Steps 3-4: If the input passes content moderation, it is sent to the chatGPT
model. If the input doesn’t pass content moderation, it goes straight to template
response generation.

Step 5-6: Once the model generates the response, it is sent to a content
moderation component again. This ensures the generated response is safe,
harmless, unbiased, etc.

Step 7: If the input passes content moderation, it is shown to the user. If the
input doesn’t pass content moderation, it goes to template response generation
and shows a template answer to the user.

Top Hidden Costs of Cloud Providers

Is the cloud really free or inexpensive?

While it may be inexpensive or even free to get started, the complexity often leads to hidden
costs, resulting in large cloud bills.

The purpose of this post is not to discourage using the cloud. I’'m a big fan of the cloud. | simply
want to raise awareness about this issue, as it's one of the critical topics that isn't often
discussed.

While AWS is used as an example, similar cost structures apply to other cloud providers.

I Top Hidden Costs of Cloud Providers @ blog.bytebytego.com

$ @

Cost Type Illustration Hidden costs
FREE * @ . . . ‘ AWS Free Tier has limits

Free Tier on many resources.

Ph | gt Bchedinc thosa JITlks

can be costly.

Under-utilized
Elastic IP (EIP)
addresses

Free for 5 Extra
Gt G G

G G

Free for 5.
Any extra charged at
hourly rate.

Unused Elastic
Load Balancers

Illl ol

An unused Load Balancer
is still charged at an
hourly rate.

| Unuseld Kk . _" ‘ Unused EBS Unused EBS are
Elastic Bloc
Storage ‘__>° charged at GB-month
(EBS) rate.
EC2
Orphan Elastic Backip Delete an EBS volume
Block Storage will NOT delete
Snapshots | Agg¥--oeeeees ® ---------- backups, create
orphan backups cost.
$ $ $ —I% Get, List, and Retrieval
> < request could be much
Sd-Ancens Chatges U Wiite Request | more costly than file
storage cost.
parta &
S3 Partial Uploads Incomplete multipart
| Multipart ® uploads still incur charges
upload part.b
FREE aWS aWS $ $ Transfer to AWS is FREE,
Transfer cost —t ? —— but transfer out can be

costly.

1. Free Tier Ambiguity: AWS offers three different types of free offerings for common
services. However, services not included in the free tier can charge you. Even for services
that do provide free resources, there's often a limit. Exceeding that limit can result in
higher costs than anticipated.

2. Elastic IP Addresses: AWS allows up to five Elastic IP addresses. Exceeding this limit
incurs a small hourly rate, which varies depending on the region. This is a recurring
charge.

3. Load Balancers: They are billed hourly, even if not actively used. Furthermore, you'll face
additional charges if data is transferred in and out of the load balancer.

4. Elastic Block Storage (EBS) Charges: EBS is billed on a GB-per-month basis. You will be
charged for attached and unattached EBS volumes, even if they're not actively used.

5. EBS Snapshots: Deleting an EBS volume does not automatically remove the associated
snapshots. Orphaned EBS snapshots will still appear on your bill.

6. S3 Access Charges: While the pricing for S3 storage is generally reasonable, the costs
associated with accessing stored objects, such as GET and LIST requests, can sometimes
exceed the storage costs.

7. S3 Partial Uploads: If you have an unsuccessful multipart upload in S3, you will still be
billed for the successfully uploaded parts. It's essential to clean these up to avoid
unnecessary costs.

8. Data Transfer Costs: Transferring data to AWS, for instance, from a data center, is free.
However, transferring data out of AWS can be significantly more expensive.

Over to you: Have you ever been surprised by an unexpected cloud bill? Share your experiences
with us!

Algorithms You Should Know Before You Take System Design
Interviews

These algorithms aren’t just useful for acing system design interviews - they’re also great tools
for building real-world systems.

Algorithms you should know before system) ByteByteGo.com
design interviews
Algorithm How it Works ~ Priority Use Cases
Geohash L. & 6 1 Location based service
Quadtree o & & { Location based service
Consistent ,{ \ g s o . Balance the load within
; XXX KX :
Hashing - a cluster of services
B
Leaky bucket g * % A K Rate limiter
Token bucket & & & & 4 Rate limiter
Trie & 6 & & ¢ Search autocomplete
Rsync File transfers
Raft/Paxos Consensus algorithms
Bloomfilter Eliminate costly lookups
Merkle tree * % % Identify inconsistencies
o o @ between nodes
X
HyperLogLo } Count unique values
yp glLog fast
Count-min Estimate frequencies of
sketch items
‘H|lerarch|cal Job scheduler
timing wheels
Operational 2 o
taraforTation Collaborative editing

We made a video on this topic. The video contains an updated list and provides real-world case
studies.

Watch here:_https://Inkd.in/ecMErZkg

https://lnkd.in/ecMErZkg

Understanding Database Types

To make the best decision for our projects, it is essential to understand the various types of
databases available in the market. We need to consider key characteristics of different database
types, including popular options for each, and compare their use cases.

Types of
Databases

Relational / SQL Time-series
Database ETELELT
- MySOL * InfluxDB * MongoDB
* Qracle * Timescale DB » Cassandra
= Microsoft SQL Server = Graphite * Redis
* PostgreSaL * Prometheus * Couchbase
X Relationship & High-write & query Ap | Document-based
referential integrity performance
= Column-based
—p Structured data Data Compression
et Key-value
—p SQL Support Time-based data
tenti lici
retention poficies N+ | Graph-database
S Transactmns.& o .
ACID properties Built-in time-series L
: Distributed Arch.
functions ey
Indexing & Svercnl
— e | Concurrency Ctrl NoSQL —
Optimization Scalability NewSQL
“—3 | Security Features SG): Compatiibty

How does gRPC work?

RPC (Remote Procedure Call) is called “remote” because it enables communications between
remote services when services are deployed to different servers under microservice

architecture. From the user’s point of view, it acts like a local function call.

The diagram below illustrates the overall data flow for gRPC.

How does gRPC Work? §) blog.bytebytego.com
Process
Man%r ' Server A Server B
local function call mm RPC - Payment Service
Payment
S _ 'Binary Encoding - ProtoBuf
Client App ' JSON

-

(1)!REST call! = =~

Client Application
' I
@reslult ®rpcfa"
Encoding/Decoding
1 @i | i
\client stub
@deolode =g

gPRC Runtime

1
@ rac?eive @ se‘nd

0
.,:

Server Application

1 |
@retum

Ioc?l call ‘
Encoding/Decoding

? @encor;e stub
®dect|3destub ‘

gPRC Runtime
+ |
@ re?eive @ serd

Transport

Transport

Order Service

Payment Service

Step 1: A REST call is made from the client. The request body is usually in JSON format.

Steps 2 - 4: The order service (gRPC client) receives the REST call, transforms it, and makes an
RPC call to the payment service. gPRC encodes the client stub into a binary format and sends it
to the low-level transport layer.

Step 5: gRPC sends the packets over the network via HTTP2. Because of binary encoding and
network optimizations, gRPC is said to be 5X faster than JSON.

Steps 6 - 8: The payment service (gRPC server) receives the packets from the network, decodes
them, and invokes the server application.

Steps 9 - 11: The result is returned from the server application, and gets encoded and sent to
the transport layer.

Steps 12 - 14: The order service receives the packets, decodes them, and sends the result to the
client application.

Over to you: Have you used gPRC in your project? What are some of its limitations?

How does a Password Manager such as 1Password or Lastpass work?
How does it keep our passwords safe?

The diagram below shows how a typical password manager works.

' How does Password Manager Work? [blog.bytebytego.com
Usage Scenarios Clients
0 ol o
L O (=) ® Y
Individual Team \pp cu
Passwords Password Extension
| 25KD Process i Accounts Table
] Password |
——— Fo N] sait ;
: rovided by users 1 <[~ - - E : #)
B N e e e B e ’ e
' Email Address | 80 | 2 ! Jg
) s s s : {two-secrat key derivation) /] !
1 | usedtounlock MUK i ' MUK '
I 1 application, NOT = |- -~ (Master Unlock Key) | | | (Master Unlock Key) |
1 | storedondisk . o unleks password ;| ! i
P e Account e vaults P) ;
b e el : Password 25KD ® i ' & g
v | aulogenerated | | S (two-secret key dervation) il | i
. stored locally b o ! :
L . . sex fEC sex
: \M B SAP Salt [2 ~...!“.35.(:"§-..,
O 155200525 N
Keysets Table - Encrypted
Primary Keyset | Keyset 2 Keyset 3
[RsA-Pudic | [RsA-Pubic |
[RsAPrvate | {~ [Rsa-Private |
+ \ \ ‘\
A T
[Vault Key | VaullKey IRIR Vauukey || [Vautkey |
Le | P | P | || [[Password |
e [
2 ‘a f £
Read-Only Read-Write
Private Vault Team Vault Team Vault Shared Vault

Vaults
(Can only be decrypted at the client using MUK)

A password manager generates and stores passwords for us. We can use it via application,
browser extension, or command line.

Not only does a password manager store passwords for individuals but also it supports
password management for teams in small businesses and big enterprises.

Let’s go through the steps.

Step 1: When we sign up for a password manager, we enter our email address and set up an
account password. The password manager generates a secret key for us. The 3 fields are used to
generate MUK (Master Unlock Key) and SRP-X using the 2SKD algorithm. MUK is used to decrypt
vaults that store our passwords. Note that the secret key is stored locally, and will not be sent to
the password manager’s server side.

Step 2: The MUK generated in Step 1 is used to generate the encrypted MP key of the primary
keyset.

Steps 3-5: The MP key is then used to generate a private key, which can be used to generate AES
keys in other keysets. The private key is also used to generate the vault key. Vault stores a
collection of items for us on the server side. The items can be passwords notes etc.

Step 6: The vault key is used to encrypt the items in the vault.

Because of the complex process, the password manager has no way to know the encrypted
passwords. We only need to remember one account password, and the password manager will

remember the rest.

Over to you: Which password manager have you used?

Types of Software Engineers

Types of Software Engineers and Their Typically Required Skills

8 blog.bytebytego.com

Front End Engineers

Designs and codes user interfaces
for applications

Back End Engineers

Builds and maintains server-side
logic for applications

Full Stack Engineers
MOST LEARNING

Everything Front End & Back End
Engineers do

Skills Include

/ @ Version Control
J @
HTTPS

HTTPS Understanding

Skills Include

J ® Version Control

J @ | HTTPS Understanding
HTTPS

Skills Include

/ @ Version Control

J .8, HTTPS Understanding

J E APls Understanding / Ml APIs Understanding J m APls Understanding

J @ Programming Language / g‘ Programming Language J E Programming Language
/ E HTML / E Database Proficiency / g HTML

v EJ css ¥ 5 caching strategies v EJ css

v [savascrip v Iy Server Managementand | of [T vavascrio

J Front-end Frameworks

@ React
v Vue

g Angular

(soon...)

J Front-end Frameworks

J —] Database Proficiency

/ g Caching Strategies
0

Server Management and
Deployment

In this overview, we'll explore three key types of Software engineers:

1. Front-End Engineer:
Specializes in creating user interfaces using HTML, CSS, and JavaScript. They focus on

ensuring that apps are visually appealing and user-friendly.

2. Back-End Engineer:
Works on the server-side of web applications, managing data, business logic, and server

infrastructure to ensure functionality, performance, and security.

3. Full-Stack Engineer:
A versatile expert who combines the roles of Front-End and Back-End engineers,
handling Ul design, server-side tasks, databases, APIs, and ensuring seamless application
integration. They cover the entire development spectrum from start to finish.

Over to you: Which type of software engineer resonates most with your interests and career
aspirations?

How does REST API work?

What are its principles, methods, constraints, and best practices? We hope the diagram below
gives you a quick overview.

e s

-\\\‘-'—'———.
f/ REST API Design —\
.| Self-descriptive \

Messages -
Cacheabla Layered System e
Code On-Demand Principles] Uniform Interface |
Manipulation of
Resourcas
Stateless Client-Server Through |

Representations

-—{{_' Simple B Fine-grained Hypermedia as
REST

the Engine of

= " | Application State |
o o] (]
hitip:/Veg.com/icustomersi 33245 [Fiesk kR ey i \I [HATEDAS)
GET =

I
hitp:!feg.com/icustomers 33245 E I
hitp:/ /e com/custamers 33245 /arders l—] ~—# | Filtering { Ordering * == Conneciedness= =
“links™{

i POST
iltped feg.com/cusbomers m T |
= | Resource Naming ral™ "naxl”,

PR —]

“href: "http:/ fapieg.comfusers/ 42 7offet=208limit=3"
L

L]
e — [MonMﬁngIH—»| Versianing l |

http:!feg.comicustomers/ 33246
(e o [][]
Input Validations | +=—T—# | Idempotence
s Je o

N --@

Session, cookie, JWT, token, SSO, and OAuth 2.0 - what are they?

These terms are all related to user identity management. When you log into a website, you
declare who you are (identification). Your identity is verified (authentication), and you are
granted the necessary permissions (authorization). Many solutions have been proposed in the
past, and the list keeps growing.

Session, cookie, JWT, token, SSO, OAuth 2.0 £ ByteByteGo.com
Session-cookie
WWW-Authenticate browser Server
=
username (S |- inability to control the login life cycle —»| C =
Q ks o = session ID
browser Pl Sarver —
doesn't support mobile apps
Token
browser
Server
Jw‘l‘ o—
S -
reduce == =
token ’
Token -+ validation validata token
headar . payload . signatura cost
Token
Validation
Service
cross-site login
Femmm—— e ———————
I authenticaion code :
]
I
| =}]
: Q N —— =1 |
= = |
! browser acom authentication |
{ server I
880" 00909090000 D000 ol Tt oA
AFIIIIIICIICC SR .
browser | client credentials '
a.com +] |
= server | ._ —..1:-: |
Cm—T
= Il = = |
/ $50.00M 3rd | a.com authentication :
|- party —=| server - server |
Q (=2 access e I s a
=3 OQAuth20 @ e e e e e
browser = native I !
cecrﬁrsal App __‘: implicit grant |
=1 AT |
= authentication | |
= 7 1
b.com Mnice] o |
| = !
' authentication |
jo. phona server I
(T I
| password grant |

From simple to complex, here is my understanding of user identity management:

e WWW:-Authenticate is the most basic method. You are asked for the username and
password by the browser. As a result of the inability to control the login life cycle, it is
seldom used today.

e Afiner control over the login life cycle is session-cookie. The server maintains session
storage, and the browser keeps the ID of the session. A cookie usually only works with
browsers and is not mobile app friendly.

e To address the compatibility issue, the token can be used. The client sends the token to
the server, and the server validates the token. The downside is that the token needs to
be encrypted and decrypted, which may be time-consuming.

e JWTis a standard way of representing tokens. This information can be verified and
trusted because it is digitally signed. Since JWT contains the signature, there is no need
to save session information on the server side.

® By using SSO (single sign-on), you can sign on only once and log in to multiple websites.
It uses CAS (central authentication service) to maintain cross-site information

e By using OAuth 2.0, you can authorize one website to access your information on
another website

Over to you:
Nowadays, some websites allow you to log in by scanning the QR code using your phone. Do
you know how it works?

Linux commands illustrated on one page!

Take a look at how many you know :)

))

[P mee) ~—{foome)

[50me 25 tasmarme . | +—{ dnstemainname |

[ome as mommame . | +—{ omamname |

[s:nexmsm -.\] -—[mhﬂu] Host Irformation

[Sm&mwl] -—|um
i) —(3)
Chter crereiasl In et and Seplay etk]

=
(o
[Lma..pu-e-eymkoiwmmumu] ._@ i

Look up hosinames, 17 addresses, and DG
o,

Chack ¥ s ramcte host s rchatie

['ﬂcwh‘!ll(hﬁcrﬁﬁdhwdmmi] *—[m]

Hizit Lovcation

S Inin & remcte hoet, or e
—3 -
o] -

Secerely copy Hes nfom o remobe host | o =
s
Secunsly mopy ties boffom e remote hosd |

.

Cogyy filem tofrom 4 oemot host (ribwactie, -
Inseurel],

)

LINUX

([roprical mat e, | o thunderird |
&
)

o) o] o] e
) —(E) —

Email

Diwrioad weh pages and ks, ._@

Controlling processes: kill, killall, nice
Scheduling jobs: sleep, watch, crontab
Host location: host, whois, ping, traceroute
Network connections: ssh, telnet, scp, ftp
Screen output: echo, printf, seq, clear
Viewing Processes: ps, uptime, top, free
And many more

Linux commands:_https://xmind.app/m/WwtB

-

Commands

File Creation and Editing

Flle: Praperties

lrbltluﬂhﬂmﬁtﬂmm.]
{Eﬂmhmmmu.}

))

-~ [E]_' [oty smrttes of s e vectoves. =)
No

[&~

- Charge Srvastarepe of flaa and tckried
L =

[[mmmuﬂmlﬂﬂdm
- [e provecson mase o oes and arectones. |
E]—o L pr—|

Chainge extended amibunes of fies and
dreciones

Sl

-
—

“E [meumﬂmmdnﬂammm.]

(=)
([Proomes et of kocmve e Gare rasch o

[Mmmummumm-m]
lor strirg

i - (5 (=]
[mﬂummnmmm|w
sk
Losatn emscariabies, ducumantition, nd
souRE s,
Exphigan.
-
Append mobsmns,
File Teot Maripulation

AR
il
igg

£

a file and grint it on standand oo,

|

o
il

~ 007
E

o

[———

https://xmind.app/m/WwtB/

The Payments Ecosystem

How do fintech startups find new opportunities among so many payment companies? What do
PayPal, Stripe, and Square do exactly?

The Payments Ecosystem 5 blog bytebytego.com
(ISO/MSP)
Acquiring =
8 The Transaction Groug » sl - -~ .
NorthAmeric v Tremo 7 b
& square Paywis hAmarican o \\
\ J b
Payment
[Payment Gateway \ K Gateway l|:|l|I£|
PrayPal giripe |/ Merchant
Woroosy G
Klarna. | AN
adyen Acquiring Merchant VR lllllll
a Alipay Processor
Acquiring Bank

g J

/ Payment Processor \ ’,” Card Network
adyen fiserv. | VISA
worldpay Ejavdn '

P FrrstData. g globalpayments

arms'r AMERICAN ’ PayPal

PAYMENT SYSTEMS

% -,

: 0o A~
o < I e ¥,
processor — T
Issuing Bank
g v 4
0.-
Issuing 8" -

Cardholder

Steps 0-1: The cardholder opens an account in the issuing bank and gets the debit/credit card.
The merchant registers with ISO (Independent Sales Organization) or MSP (Member Service

Provider) for in-store sales. ISO/MSP partners with payment processors to open merchant
accounts.

Steps 2-5: The acquiring process.

The payment gateway accepts the purchase transaction and collects payment information. It is
then sent to a payment processor, which uses customer information to collect payments. The
acquiring processor sends the transaction to the card network. It also owns and operates the
merchant’s account during settlement, which doesn’t happen in real-time.

Steps 6-8: The issuing process.
The issuing processor talks to the card network on the issuing bank’s behalf. It validates and
operates the customer’s account.

I've listed some companies in different verticals in the diagram. Notice payment companies
usually start from one vertical, but later expand to multiple verticals.

Algorithms You Should Know Before You Take System Design
Interviews (updated list)

I Algos You Should Know Before System Design Interviews

; Consistent Token :
Algorithm y Geohash | Quadtree Loy Trie |Bloomfilter Raft/Paxos
Hashing bucket | bucket
Jo|n O = = ® i
B A |EIBIA |
_ A8 S | = .| ee [/iN| @
How it - = £y i i
v |1 NEEEE 2\ | © | # | g9 |58 /)
woafanaf voo| 1o =~ 4 \ I h '\, o ¥ LA
—a wot|1om L-*‘} =y — \ | r-ﬁ | \'f/ f o J .«
i Il:u"'!“ peil Bl "II Ill-l....\ D* - v OQU (:l U_Ii:l_li_l_l_l 0 0
vl 2 [+ L\
000 O =0l ¢é

- Consistent hashing
- Spatial Indexing
- Rate Limiting

- Tries

- Bloom Filters
- Consensus Algorithms

Watch the whole video here: https://Inkd.in/eMYFDjVU

https://lnkd.in/eMYFDjVU

How is data transmitted between applications?

The diagram below shows how a server sends data to another server.

| How is Data Transmitted between Apps? blog.bytebytego.com

o v sm“ Umsm“

| 'y’ | Receiving
m A i i

Reference: Xiaolincoding

Assume a chat application running in the user space sends out a chat message. The message is
sent to the send buffer in the kernel space. The data then goes through the network stack and is
wrapped with a TCP header, an IP header, and a MAC header. The data also goes through qdisc
(Queueing Disciplines) for flow control. Then the data is sent to the NIC (Network Interface
Card) via a ring buffer.

The data is sent to the internet via NIC. After many hops among routers and switches, the data
arrives at the NIC of the receiving server.

The NIC of the receiving server puts the data in the ring buffer and sends a hard interrupt to the
CPU. The CPU sends a soft interrupt so that ksoftirqd receives data from the ring buffer. Then
the data is unwrapped through the data link layer, network layer and transport layer. Eventually,
the data (chat message) is copied to the user space and reaches the chat application on the
receiving side.

Over to you: What happens when the ring buffer is full? Will it lose packets?

What are the common load-balancing algorithms?

The diagram below shows 6 common algorithms.

Load Balancing Algorithms §) blog.bytebytego.com

2. Sticky Round Robin

4. IP/URL Hash

hash(IF) = 0

req 1

Service A

weight = 0.8

5. Least Connections ' 6. Least Time

resp time: Ims If.-"

e Static Algorithms
1. Round robin

The client requests are sent to different service instances in sequential order. The
services are usually required to be stateless.

2. Sticky round-robin

This is an improvement of the round-robin algorithm. If Alice’s first request goes to
service A, the following requests go to service A as well.

3. Weighted round-robin
The admin can specify the weight for each service. The ones with a higher weight handle
more requests than others.

4. Hash
This algorithm applies a hash function on the incoming requests’ IP or URL. The requests
are routed to relevant instances based on the hash function result.

e Dynamic Algorithms
5. Least connections
A new request is sent to the service instance with the least concurrent connections.

6. Least response time
A new request is sent to the service instance with the fastest response time.

Over to you:
1. Which algorithm is most popular?
2. We can use other attributes for hashing algorithms. For example, HTTP header, request
type, client type, etc. What attributes have you used?

Cloud Native Anti Patterns

By being aware of these anti-patterns and following cloud-native best practices, you can design,
build, and operate more robust, scalable, and cost-efficient cloud-native applications.

|C|0Ud Native Anti Patterns blog.bytebytego.com

Topup 03
Update 02

Update
/o1

What

you need
Monolithic Ignoring Cost Mutable
Architecture Optimization Infrastructure

Performance
. €« G)))
Light 80% 1GB “

Load Load
Inefficient DB Large Containers / Ignoring CI/CD
Access Patterns Bloated Images Pipelines
@__ﬁi
Bob serveri

®—’i John Data

John server2

Using Too Many
Shared Resources Cloud Services Stateful

Dependency Without a Strategy Components

1. Monolithic Architecture:
One large, tightly coupled application running on the cloud, hindering scalability and

agility

2. lgnoring Cost Optimization:
Cloud services can be expensive, and not optimizing costs can result in budget overruns

3. Mutable Infrastructure:

- Infrastructure components are to be treated as disposable and are never modified in
place

- Failing to embrace this approach can lead to configuration drift, increased maintenance,
and decreased reliability

4. |Inefficient DB Access Patterns:
Use of overly complex queries or lacking database indexing, can lead to performance
degradation and database bottlenecks

5. Large Containers or Bloated Images:
Creating large containers or using bloated images can increase deployment times,
consume more resources, and slow down application scaling

6. lIgnoring CI/CD Pipelines:
Deployments become manual and error-prone, impeding the speed and frequency of
software releases

7. Shared Resources Dependency:
Applications relying on shared resources like databases can create contention and
bottlenecks, affecting overall performance

8. Using Too Many Cloud Services Without a Strategy:
While cloud providers offer a vast array of services, using too many of them without a
clear strategy can create complexity and make it harder to manage the application.

9. Stateful Components:
Relying on persistent state in applications can introduce complexity, hinder scalability,
and limit fault tolerance

Over to you:
What anti-patterns have you faced in your cloud-native journey? How did you conquer them?

Uber Tech Stack - CI/CD

Uber is one of the most innovative companies in the engineering field. Let’s take a look at their

CI/CD tech stacks.

Note: This post is based on research on Uber engineering blogs. If you spot any inaccuracies,

please let us know.

I Tech Stack - CI/CD) blog.bytebytego.com

spring

o@D o T ey @

c Flipr Devpod uBuild Buildkite uDeploy

N

o
On-Call
NullAway Dashboard

uMetric uMonitor

Project planning: JIRA

Backend services: Spring Boot to develop their backend services. And to make things
faster, they've created a nifty configuration system called Flipr that allows for speedy
configuration releases.

UACt

o

PELOTON

Crane

®m3

even

Code issues: They developed NullAway to tackle NullPointer problems and NEAL to lint the
code. Plus, they built Piranha to clean out-dated feature flags.

Repository: They believe in Monorepo. It uses Bazel on a large scale.

Testing: They use SLATE to manage short-lived testing environments and rely on Shadower for
load testing by replaying production traffic. They even developed Ballast to ensure a smooth
user experience.

Experiment platform: it is based on deep learning and they've generously open-sourced parts of
it, like Pyro.

Build: Uber packages their services into containers using uBuild. It's their go-to tool, powered by
Buildkite, for all the packaging tasks.

Deploying applications: Netflix Spinnaker. It's their trusted tool for getting things into production
smoothly and efficiently.

Monitoring: Uber built their own monitoring systems. They use the uMetric platform, built on
Cassandra, to keep things consistent.

Special tooling: Uber relies on Peloton for capacity planning, scheduling, and operations. Crane
builds a multi-cloud infrastructure to optimize costs. And with uAct and the OnCall dashboard,
they've got event tracing and on-call duty management covered.

Have you ever used any of Uber's tech stack for CI/CD? What are your thoughts on their CI/CD
setup?

How Discord Stores Trillions Of Messages
The diagram below shows the evolution of message storage at Discord:

MongoDB [Cassandra -] ScyllaDB

How Discord Stores Trillions Of Messages § blog.bytebytego.com

Nov

100 million messages # mongoDB
Python API I 2023

trillions of messﬂges]

Data no longer fits in RAM @ Data Service
Latency becomes unpredictable i

REST RPC

@ scyLLa :
2017] @
@“ Shard-per-core
billions of messages 5 database

cassandra / \ CFPU

10 seconds i
"stop-the-world" “
e i
Row-based
Memtable Cache RAM
Commit Log Storage
SSTables

In 2015, the first version of Discord was built on top of a single MongoDB replica. Around Nov
2015, MongoDB stored 100 million messages and the RAM couldn’t hold the data and index any
longer. The latency became unpredictable. Message storage needs to be moved to another
database. Cassandra was chosen.

In 2017, Discord had 12 Cassandra nodes and stored billions of messages.

At the beginning of 2022, it had 177 nodes with trillions of messages. At this point, latency was
unpredictable, and maintenance operations became too expensive to run.

There are several reasons for the issue:

- Cassandra uses the LSM tree for the internal data structure. The reads are more
expensive than the writes. There can be many concurrent reads on a server with
hundreds of users, resulting in hotspots.

- Maintaining clusters, such as compacting SSTables, impacts performance.

- Garbage collection pauses would cause significant latency spikes

ScyllaDB is a Cassandra compatible database written in C++. Discord redesigned its architecture
to have a monolithic API, a data service written in Rust, and ScyllaDB-based storage.

The p99 read latency in ScyllaDB is 15ms compared to 40-125ms in Cassandra. The p99 write
latency is 5ms compared to 5-70ms in Cassandra.

Over to you: What kind of NoSQL database have you used? How do you like it?

References:
- Shards per core architecture
- How discord stores trillions of messages

http://scylladb.com/product/technology/shard-per-core-architecture
http://discord.com/blog/how-discord-stores-trillions-of-messages

How to diagnose a mysterious process that’s taking too much CPU,
memory, 10, etc?

The diagram below illustrates helpful tools in a Linux system.

Linux Performance Observability Tools

strace Operating System Hardware Various:
\ ltrace ss nstat sar /proc
opensnoop \ P dmesg dstat
A lsof Applications gethostlatency
fatrace /
filelif - - execsnoo
1p23:a§ \ | X System leranes/ / / mpstat P turbostat
\ N\ System Call Interface/ // profile showbaont
perf / runglen rdmsr
Ftrace VFS Sockets Scheduler # offcpt_ltime
;‘ggg File Systems TCP/UDP softirgs
bpftrace Volume Manager IP Virtual CPU
. i i Memory top atop 2
it idine Block Dewcef Net Device 4 W\ ps pidstat
y extdslower / Device Drivers \ s
(& for btrfs & T T B P f°P
nfs,xfs,zfs) i \ tcplife slabto g
mdflush tiptop | tcpdump =% P
: = tcpretrans free DRAM
iostat /O Bri udpconnect ;s
biosnoop | O Bridge | hardirgs
biolatency | criticalstat
biotop [| tat
blktrace \ | IO Controller | | Network Controller |‘\ namaeEa
nicstat
netstat
[Disk | [Disk | [Disk] [Port| [Port]| [Port |~ ip

. }

SCSl log swapon ethtool snmpget lldptool T ot aal 3021
e ‘vmstat’ - reports information about processes, memory, paging, block 10, traps, and
CPU activity.
e ‘iostat’ - reports CPU and input/output statistics of the system.
® ‘netstat’ - displays statistical data related to IP, TCP, UDP, and ICMP protocols.
e ‘Isof’ - lists open files of the current system.
e ‘pidstat’ - monitors the utilization of system resources by all or specified processes,

including CPU, memory, device 10, task switching, threads, etc.

Diagram Credit: Linux Performance by Brendan Gregg

How does Chrome work?

The diagram below shows the architecture of a modern browser. It is based on our
understanding of “Inside look at modern web browser” published by the chrome team.

| How Chreme Works?
Page 1 O

Ul Thread Storage Thread

%) Plugin Process

i Network Thread i Browser Process Renderer Process

Device Thread GPU Process

Browser Process
(on Resource-Constraint Devices)

There are in general 4 processes: browser process, renderer process, GPU process, and plugin
process.

Browser process controls the address bar, bookmarks, back and forward buttons, etc.
Renderer process controls anything inside of the tab where a website is displayed.
GPU process handles GPU tasks.

Plugin process controls the plugins used by the websites.

The browser process coordinates with other processes.

When Chrome runs on powerful hardware, it may split each service in the browser process into
different threads, as the diagram below shows. This is called Servicification.

Now let’s go through the steps when we enter a URL in Chrome.
Step 1: The user enters a URL into the browser. This is handled by the Ul thread.
Step 2: When the user hits enter, the Ul thread initiates a network call to get the site content.

Steps 3-4: The network thread goes through appropriate network protocols and retrieves the
content.

Step 5: When the network thread receives responses, it looks at the first few bytes of the
stream. If it is an HTML file, it is passed to the renderer process by the browser process.

Steps 6-9: An IPC is sent from the browser process to the renderer process to commit the
navigation. A data pipe is established between the network thread and the renderer process so
that the renderer can receive data. Once the browser process hears confirmation that the
commit has happened in the renderer process, the navigation is complete and the document
loading phase begins.

Over to you: Why does Chrome assign each tab a renderer process?

Reference: Inside look at modern web browser

https://developer.chrome.com/blog/inside-browser-part1/

Differences in Event SOurcing System Design

How do we design a system using the event sourcing paradigm? How is it different from normal

system design? What are the benefits? We will talk about it in this post.

The diagram below shows the comparison of a normal CRUD system design with an event
sourcing system design. We use an e-commerce system that can place orders and pay for the

orders to demonstrate how event sourcing works.
Differences in Event Sourcing System Design
8NonEvethourcmgNormalCRUDSy*‘em

L3 i

Bob

Lorea®a 5 modtythe g ey 60

Hew ofcer quantity to 6
7. query order state

Order Payment Query
Service Service Service

v
\ 4. modify the order

2.inserta 6. modify the order state
new order

8. query latest version
of the order

Database holds the states of
_...-="Y orders, but it does not hold the
e "source” of these changes.
Orde
OrderlD Wersion PraductiD Price Quantity State
1001 1 234 10.00 5 NEW
1001 2 234 10.00 6 MODIFIED
1001 3 234 10.00 6 PAID
Event Sourcing |
Bob
e maiyve s
quantity to & \ 8. query order status
Order Payment Query Service
Service Service
W i ; Order View
4, create a
ModifyOrderEvent 6. create a
i OrderPaymentEvent
1 2. create a K
iNewOrderEvent 7. build current states of
] orders from events
Event Store (DB or File System) Ord
OrderlD ProductiD Prica Quantity State
soyron | —{ T TEIH]
f 5 1001 234 10.00 [PAID
stquencar generates
Meowtenisl agcie e - Event Store holds the source of
EvertiD 4" Event Type Event Aftributes “» truth. We can always rebuild

OrderView from the event store.

orderiD=1001, productiD=234,
20 Natrer price=10.00, quantity=5
2002 | ModityOrder orderiD=1001, quantity=6

2003 [OrderPayment| orderiD=1001, payAmount=50

The event sourcing paradigm is used to design a system with determinism. This changes the

philosophy of normal system designs.

How does this work? Instead of recording the order states in the database, the event sourcing
design persists the events that lead to the state changes in the event store. The event store is an
append-only log. The events must be sequenced with incremental numbers to guarantee their
ordering. The order states are rebuilt from the events and maintained in OrderView. If the
OrderView is down, we can always rely on the event store which is the source of truth to
recover the order states.

Let's look at the steps in detail.

e Non-Event Sourcing

Steps 1 and 2: Bob wants to buy a product. The order is created and inserted into the
database.

Steps 3 and 4: Bob wants to change the quantity from 5 to 6. The order is modified with
a new state.

Steps 5 and 6: Bob pays $60 for the order. The order is complete and the state is Paid.

Steps 7 and 8: Bob queries the latest order state. Query service retrieves the state from
the database.

e Event Sourcing

Steps 1 and 2: Bob wants to buy a product. A NewOrderEvent is created, sequenced and
stored in the event store with eventID=2001.

Steps 3 and 4: Bob wants to change the quantity from 5 to 6. A ModifyOrderEvent is
created, sequenced, and persisted in the event store with eventID=2002.

Steps 5 and 6: Bob pays $60 for the order. An OrderPaymentEvent is created, sequenced,
and stored in the event store with eventlD=2003. Notice the different event types have
different event attributes.

Step 7: OrderView listens on the events published from the event store, and builds the
latest state for the orders. Although OrderView receives 3 events, it applies the events
one by one and keeps the latest state.

Step 8: Bob queries the order state from OrderService, which then queries OrderView.
OrderView can be in memory or cache and does not need to be persisted, because it can
be recovered from the event store.

Over to you: Which type of system is suitable for event sourcing design? Have you used this
paradigm in your work?

Firewall explained to Kids... and Adults

A firewall is a network security system that controls and filters network traffic, acting as a
watchman between a private network and the public Internet.

H & B ByteByteGo
-\e J (@ thebifdoodler
Analyzes |

nelwork Lraftic to prevent
nefwork, affacks

Locol A
Mothing, |

felwrie. protecal £

Pockel T'\J‘\[l

l i | :) inspeclion

inspects 2 (L

B Services j il ke i ! iy q an
@ Deslinalion parl e 4 : Packek Lmspection w‘"l'“

beth

© HITP Requed Strin i ; Maluare '.-Lln..! ¥ Prevention

They come in two broad categories:
Software-based: installed on individual devices for protection
Hardware-based: stand-alone devices that safeguard an entire network.

Firewalls have several types, each designed for specific security needs:

1. Packet Filtering Firewalls: Examines packets of data, accepting or rejecting based on
source, destination, or protocols.

2. Circuit-level Gateways: Monitors TCP handshake between packets to determine session
legitimacy.

3. Application-level Gateways (Proxy Firewalls): Filters incoming traffic between your
network and traffic source, offering a protective shield against untrusted networks.

4. Stateful Inspection Firewalls: Tracks active connections to determine which packets to
allow, analyzing in the context of their place in a data stream.

5. Next-Generation Firewalls (NGFWs): Advanced firewalls that integrate traditional
methods with functionalities like intrusion prevention systems, deep packet analysis,

and application awareness.

Over to you: Do you know what firewalls your company uses?

Paradigm Shift: How Developer to Tester Ratio Changed From 1:1 to
100:1

This post is inspired by the article "The Paradigm Shifts with Different Dev:Test Ratios" by Carlos
Arguelles

I highly recommend that you read the original article here:_https://Inkd.in/ehbZzZck

How Developer to Tester Ratio Changed From 1:1 to 100:1 §) ByteByteGo

Developer:Tester 1:1 (~1997)

> *;'Si/gnér\

Tester A

Tester B
Physical CD

-
[

Tester C

Devehrr:‘_fester 10:1 (~2099) _

Dev Teams Testing Platform Team

https://www.linkedin.com/in/carlos-arguelles-6352392/
https://www.linkedin.com/in/carlos-arguelles-6352392/
https://lnkd.in/ehbZzZck

1:1 ratio (~1997)

Software used to be burned onto physical CDs and delivered to customers. The development
process was waterfall-style, builds were certified, and versions were released roughly every
three years.

If you had a bug, that bug would live forever. It wasn’t until years later that companies added
the ability for software to ping the internet for updates and automatically install them.

10:1 ratio (~2009)

Around 2009, the release-to-production speed increased significantly. Patches could be installed
within weeks, and the agile movement, along with iteration-driven development, changed the
development process.

For example, at Amazon, the web services are mainly developed and tested by the developers.
They are also responsible for dealing with production issues, and testing resources are stretched
thin (10:1 ratio).

100:1 ratio (~2020)

Around 2015, big tech companies like Google and Microsoft removed SDET or SETI titles, and
Amazon slowed down the hiring of SDETs.

But how is this going to work for big tech in terms of testing?

Firstly, the testing aspect of the software has shifted towards highly scalable, standardized
testing tools. These tools have been widely adopted by developers for building their own
automated tests.

Secondly, testing knowledge is disseminated through education and consulting.

Together, these factors have facilitated a smooth transition to the 100:1 testing ratio we see
today.

Over to you: What does the future hold for testing, and how is it currently working for you?

Why is PostgreSQL voted as the most loved database by developers?

The diagram shows the many use cases by PostgreSQL - one database that includes almost all
the use cases developers need.

Why is PostgreSQL Voted "Most Loved"?) blog.bytebytego.com
Regular CRUD
b 4
/- rgs L
b s
mpostgeSOL. foreign data wrapper . mongoDB
* Most Advanced Open %* elastic
Source Relational DB
s 1A Architecture
i £X PIPELINEDB
P%;StGIS
@ Timescale

(@ citusdata

OLTP (Online Transaction Processing)
We can use PostgreSQL for CRUD (Create-Read-Update-Delete) operations.

OLAP (Online Analytical Processing)
We can use PostgreSQL for analytical processing. PostgreSQL is based on HTAP (Hybrid
transactional/analytical processing) architecture, so it can handle both OLTP and OLAP well.

FDW (Foreign Data Wrapper)
A FDW is an extension available in PostgreSQL that allows us to access a table or schema in one
database from another.

Streaming
PipelineDB is a PostgreSQL extension for high-performance time-series aggregation, designed to
power real-time reporting and analytics applications.

Geospatial
PostGIS is a spatial database extender for PostgreSQL object-relational database. It adds support
for geographic objects, allowing location queries to be run in SQL.

Time Series

Timescale extends PostgreSQL for time series and analytics. For example, developers can
combine relentless streams of financial and tick data with other business data to build new apps
and uncover unique insights.

Distributed Tables
CitusData scales Postgres by distributing data & queries.

8 Key OOP Concepts Every Developer Should Know

Object-Oriented Programming (OOP) has been around since the 1960s, but it really took off in
the 1990s with languages like Java and C++.

| 8 Key OOP Concepts Everyone Should Know) ByteByteGo.com

Template

A blueprint for creating objects, encapsulating data and methods that operate on that data

Instance

Object is an instance of a class, embodying the data and methods defined in the class.

Data hiding

Bundling data and methods operating on that data within a single unit, called a class

Code Reusability

Allows a class to inherit attributes and methods from another class, promoting code reusability

Polymorphism Multiple Forms

Polymorphism enables one interface or method to be used for different data types and classes

Association has-a

One class uses another. “has-a” relationship, so there is no dependency on each other

Aggregation Whole-part

A group, body, or mass composed of many distinct parts or individuals. no life time ownership

Composition Ownership

An object of one class owns objects of another class and is responsible for its lifetime

Why is OOP Important? OOP allows you to create blueprints (called classes) for digital objects,
and these objects know how to communicate with one another to make amazing things happen

in your software. Having a well-organized toolbox rather than a jumbled drawer of tools makes
your code tidier and easier to change.

In order to get to grips with OOP, think of it as creating digital Lego blocks that can be combined
in countless ways. Take a book or watch some tutorials, and then practice writing code - there's
no better way to learn than to practice!

Don't be afraid of OOP - it's a powerful tool in your coder's toolbox, and with some practice,
you'll be able to develop everything from nifty apps to digital skyscrapers!

Top 6 most commonly used Server Types

‘Top 6 Most Commonly Used Server Types [blog.bytebytego.com

(1)

P

Client

b

LN
Web Server

HTTP

HTTP

%

Response Derver

/_

Client

(3)

DNS Server

HTTPS Request
100.101.102.103

Web Server

100.101. 1{)2.10y

>

You

FTP Server

B

E T

N

FTP
Client A

(2)
4 Y N

Mail Server

o B B o
SMTP SMTP SMTP POP

D
Sender HHE) fidy) Receiver

Mail Server Mail Server

b y
0O
/ Prox;-é:rver \

_-E:\::i :: Internet)
AT NS

L
Client Proxy Server

f-

o

wllw

b w

(6)

/
/ Origin Server \
85dabytago_mm ﬁ 100.2.3.40 I%I %

Visitor ISP
Edge Server Origin Server

b‘f‘ebl"eg"-‘“’“"l T| 00.2.3.40 75.3.56.212

4

\ DNS Server _/

1. Web Server: Hosts websites and delivers web content to clients over the internet

2. Mail Server:Handles the sending, receiving, and routing of emails across networks

3. DNS Server: Translates domain names (like bytebytego.com) into IP addresses, enabling
users to access websites by their human-readable names.

4. Proxy Server: An intermediary server that acts as a gateway between clients and other
servers, providing additional security, performance optimization, and anonymity.

5. FTP Server: Facilitates the transfer of files between clients and servers over a network

6. Origin Server: Hosts central source of content that is cached and distributed to edge
servers for faster delivery to end users.

Over to you: Which type of server do you find most crucial in your online experience?

DevOps vs. SRE vs. Platform Engineering. Do you know the
differences?

I DevOps vs SRE vs Platform Engineering 9 blog.bytebytego.com

SRE Organization

Standards

Unified
Infrastructure

Product A Product C

M [Dev || Test || Pu | [Dev (Test || M Dev SRE
pan ||| (Gods) | | [Teat) || | (Pn]| | @ose)| [rest] (| | [Pn] | (o) (o)

Unified Infrastructure

In this video, we will talk about:

- Who invented DevOps?
- What is SRE? What are some of the best SRE practices and tools?

- What is Platform Engineering? How is it different from others?
- How can they be used to improve collaboration, automation, and efficiency in software
development and operations?

5 important components of Linux

| 5 important components of Linux [blog.bytebytego.com

o)

Interface
Device Ak Virtual
Drivers ﬂ Memory il

Object

A=Y Allocation

Physical
Memory

Memory

Threads

Synchronization

J

(Q AR

-

Q-
C—
C—
C—

Storage

=1=] | interace

Network Virtual File
Protocols System

E VO Cache

Storage
Devices

® System
In the system component, we need to learn modules like system APls, device drivers,
I/0, buses, etc.

Memory
In memory management, we need to learn modules like physical memory, virtual
memory, memory mappings, object allocation, etc.

Process
In process management, we need to learn modules like process scheduling, interrupts,
threads, synchronization, etc.

Network
In the network component, we need to learn important modules like network protocols,
sockets, NIC drivers, etc.

Storage
In system storage management, we need to learn modules like file systems, 1/0O caches,
different storage devices, file system implementations, etc.

How to scale a website to support millions of users?

We will explain this step-by-step.

The diagram below illustrates the evolution of a simplified eCommerce website. It goes from a
monolithic design on one single server, to a service-oriented/microservice architecture.

| How to Scale a Website Step-by-Step? B BytebyteGo
Application Server Appl\camnServef
(One Single Server)
= ®
s>
Lo
[
Split sevices
inmilrms
! I\ [Aopbcaton Sarer| [Appcaton server

Application Server Application Server

N | .

@ :
—ee 1
1T

balancer

Application Server Application Server Application Server Application Server

Vo || | .- =l
Lvertical partitioning 3.

2. Add cache

]

DBA DB A :
-
DBB DBB | read read H

Spiit and modularize
services info
service-oriented
architecture imicroservice
&

Suppose we have two services: inventory service (handles product descriptions and inventory
management) and user service (handles user information, registration, login, etc.).

Step 1 - With the growth of the user base, one single application server cannot handle the
traffic anymore. We put the application server and the database server into two separate
servers.

Step 2 - The business continues to grow, and a single application server is no longer enough. So
we deploy a cluster of application servers.

Step 3 - Now the incoming requests have to be routed to multiple application servers, how can
we ensure each application server gets an even load? The load balancer handles this nicely.

Step 4 - With the business continuing to grow, the database might become the bottleneck. To
mitigate this, we separate reads and writes in a way that frequent read queries go to read
replicas. With this setup, the throughput for the database writes can be greatly increased.

Step 5 - Suppose the business continues to grow. One single database cannot handle the load
on both the inventory table and user table. We have a few options:

Step 6 - Now we can modularize the functions into different services. The architecture becomes
service-oriented / microservice.

What is FedNow (instant payment)

JPMorgan, Wells Fargo, and other major banks will use the new Federal Reserve's 'FedNow'
instant payment system. Let's take a look at how it works.

Federal Reserve launched FedNow instant payment service on 20 Jul. It allows retail clients to
send and receive money within seconds and it is available 24x7.

e What does this mean?

1. Peer-to-peer payment services in the private sector like Venmo or PayPal act as
intermediaries between banks, so we need to leverage payment schemes for clearing
and Fed systems for settlement. However, FedNow can directly settle the transactions in
central bank accounts. [1]

2. Fedwire, another real-time payments system, will still function in large-value or
low-value payments. FedNow is not designed to replace Fedwire.

The diagram below shows a comparison between FedNow and ACH (Automated Clearing
House), which is used in domestic low-value payments.

| What is FedNew (instant payment) blog.bytebytego.com

FedNow (instant payment)

Sender Receiver

2w s
@ initiate gepits payer's credits payee's
paymanl aomunt 0 account

validate payment
submn payment @' o @ [

message
. _—" message ‘\ 9 /___send the message\ AN

FedNew L
; HI =~ reply to FedNow, __—EHF2
Sender's Bank ml:yogfn smen 0 debits and credits accept the message Receiver's Bank
plete
the designated
accounts

notify settlement

within seconds is complete

Vs
ACH (aren't real-time)

& Receive an authorization from Alice 8

Alice
Sender

Bob
Receiver

Y *)
@ payment Bob receives
transaction payment

@ pull funds

(3] (4]
/payment instruction, tements____‘___-‘
M- o DO o

distribute funds I withdrawn funds are
Receiver's Bank clearing and sent to ACH operator ~ Sender's Bank

' 9 settlement b

© ©

clearing broadcast- Fedwire@ i clearing boardcast————
Wired Lo cheliver

source; https/iwww. kKlaros.co '!1.'['.!'!-'—.[.".1_ a-on-the-federal-reserve-s-fednow-sarvice

e FedNow [2]
Step O - Bob wants to pay Alice $1000.
Step 1 - Bob initiates a payment transaction using FedNow.
Step 2 - The sender’s bank submits a payment message to FedNow.
Step 3 - The FedNow service validates the payment message.
Step 4 - The FedNow service sends the payment message to the receiver’s bank, where it
is confirmed.
Step 5 - The receiver’s bank replies to FedNow, confirming that the payment is accepted.
Step 6 - The FedNow service debits and credits the designated accounts of the sender
and receiver’s banks.

Step 7 - The FedNow service notifies the sender’s bank and receiver’s bank that the
settlement is complete.
Step 8 - The banks debit and credit the bank accounts.

e ACH
Step 1 - Bob receives authorization from Alice that he can deduct from Alice’s account.
Step 2 - The payment transaction is sent to the receiver’s bank.
Step 3 - The bank collects files in batches and sends them to the ACH operator.
Step 4 - The ACH operator sends the files to the sender’s bank.
Step 5 - The sender’s bank pulls funds from Alice’s account.
Step 6 - Withdrawn funds are sent to the ACH operator.
Step 7 - The ACH operator distributes funds to Bob’s bank.
Step 8 - Bob receives the fund.
Step 9 - The clearing instructions are sent to Fedwire.
Step 10 - Fedwire sends clearing broadcasts to banks for settlements.

Over to you: What types of instant payment systems does your country provide?

Reference:
[1] Federal Reserve launches FedNow instant payment service that could bypass Venmo and

PayPal
[2] Q&A on the Federal Reserve’s FedNow Service

https://www.nbcnews.com/business/consumer/federal-reserve-launches-fednow-instant-payment-service-bypass-venmo-p-rcna95380
https://www.nbcnews.com/business/consumer/federal-reserve-launches-fednow-instant-payment-service-bypass-venmo-p-rcna95380
https://www.klaros.com/post/q-a-on-the-federal-reserve-s-fednow-service

5 ways of Inter-Process Communication

How do processes talk to each other on Linux? The diagram below shows 5 ways of
Inter-Process Communication.

| 5 Inter-Process Communications) blog.bytebytego.com

O) Ve)

ps -ef
| grep ‘error
| awk '{print $3}'

\ | xargs kill -9 / \ /
O e) ¢ "
Process A "'i"i\

elease——

acquire— ™|

elease Shared
K | Resources j

X8 828

1. Pipe
Pipes are unidirectional byte streams that connect the standard output from one
process to the standard input of another process.

2. Message Queue

Message queues allow one or more processes to write messages, which will be read by
one or more reading processes.

3. Signal
Signals are one of the oldest inter-process communication methods used by Unix
systems. A signal could be generated by a keyboard interrupt or an error condition such
as the process attempting to access a non-existent location in its virtual memory. There
are a set of defined signals that the kernel can generate or that can be generated by
other processes in the system. For example, Ctrl+C sends a SIGINT signal to process A.

4. Semaphore
A semaphore is a location in memory whose value can be tested and set by more than
one process. Depending on the result of the test and set operation one process may
have to sleep until the semaphore's value is changed by another process.

5. Shared Memory
Shared memory allows one or more processes to communicate via memory that appears
in all of their virtual address spaces. When processes no longer wish to share the virtual
memory, they detach from it.

Reference: Interprocess Communication Mechanisms

https://tldp.org/LDP/tlk/ipc/ipc.html

What is a webhook?

The diagram below shows a comparison between polling and webhook.

__

What is a Webhook? §) blog.bytebytego.com
- Wesnook § 4 PoLLING
=
API Gateway API Gateway
7| services (. T | services
. Order Order
Service VS Service
: I result [ERYmatt Servics] i I [Fayment Service] E I
; i ; ; ' payment not payment ; I
£ . " : | ready? ready ready? result : .
External External
il @ Payment Processor { Payment Processor o
stripe i stripe f |

Assume we run an eCommerce website. The clients send orders to the order service via the API
gateway, which goes to the payment service for payment transactions. The payment service
then talks to an external payment service provider (PSP) to complete the transactions.

There are two ways to handle communications with the external PSP.

1. Short polling
After sending the payment request to the PSP, the payment service keeps asking the PSP
about the payment status. After several rounds, the PSP finally returns with the status.

Short polling has two drawbacks:
- Constant polling of the status requires resources from the payment service.
- The External service communicates directly with the payment service, creating
security vulnerabilities.

2. Webhook
We can register a webhook with the external service. It means: call me back at a certain
URL when you have updates on the request. When the PSP has completed the
processing, it will invoke the HTTP request to update the payment status.

In this way, the programming paradigm is changed, and the payment service doesn’t
need to waste resources to poll the payment status anymore.

What if the PSP never calls back? We can set up a housekeeping job to check payment status
every hour.

Webhooks are often referred to as reverse APIs or push APIs because the server sends HTTP
requests to the client. We need to pay attention to 3 things when using a webhook:

1. We need to design a proper API for the external service to call.

2. We need to set up proper rules in the API gateway for security reasons.

3. We need to register the correct URL at the external service.

What tools does your team use to ship code to production and ensure
code quality?

The approach generally depends on the size of the company. There is no one-size-fits-all
solution, but we try to provide a general overview.

' Company Size vs. Tools They Use To Ship to Production [blog.bytebytego.com

S M L XXL
&‘ 1-10 10-100 100 - 1000 1000 - 10,000+
Engineer
& Confluence | ¥ Confluence
9] Flira 3 | Jira 9
)il Visual Studic Code Visual Stu Jde Visual Studio Code
Visual Studio Code g H i
X - @ intei)iDEA | BinteliJIDEA | B inteli e
GitHub o . it &
GitHub Enterprise it
Develop) GitHubEnterprise ® g Workflow
@ senins
Free or low-cost Free and commercial | Largely Commercial Commercial or
Truck based Truck/Feature based Feature based customized tooling
development development development Truck based

development

3 Q| t 1@ &%

Testi . ; ¢
K Manual Testing Quality Assurance Quality Assurance Automated Testing
+ +
Automated Testing Quality Assurance

® == =il =i

Deploy Manual deployment Schedule-based Schedule + staged | Schedule + Staged
deployment canary rollout canary rollout +
experiment

Operations Customer report Monitoring/Alert + Monitoring/Alert + SLA/SLO +
Tiered Customer Tiered Custormer Monitoring/Alerting +
Support + Customer | Support 4 Customer Tiered Customer
report report Support

1-10 employees: In the early stages of a company, the focus is on finding a product-market fit.
The emphasis is primarily on delivery and experimentation. Utilizing existing free or low-cost
tools, developers handle testing and deployment. They also pay close attention to customer
feedback and reports.

10-100 employees: Once the product-market fit is found, companies strive to scale. They are
able to invest more in quality for critical functionalities and can create rapid evolution
processes, such as scheduled deployments and testing procedures. Companies also proactively
establish customer support processes to handle customer issues and provide proactive alerts.

100-1,000 employees: When a company's go-to-market strategy proves successful, and the
product scales and grows rapidly, it starts to optimize its engineering efficiency. More
commercial tools can be purchased, such as Atlassian products. A certain level of
standardization across tools is introduced, and automation comes into play.

1,000-10,000+ employees: Large tech companies build experimental tooling and automation to
ensure quality and gather customer feedback at scale. Netflix, for example, is well known for its
"Test in Production" strategy, which conducts everything through experiments.

Over to you: Every company is unique. What stage is your company currently at, and what tools
do you use?

Stack Overflow's Architecture: A Very Interesting Case Study

Stack Overflow is a multi-tenant monolithic application serving 2 billion monthly page views
across 200 sites.

It's on-prem, with only 9 1IS web servers.
SQL Server has 1.5TB of RAM with no caching layer.
We conducted an in-depth research on this topic.

Watch and subscribe here: https://Inkd.in/eSPvVrXz

https://lnkd.in/eSPvVrXz

Are you familiar with the Java Collection Framework?

Every Java engineer has encountered the Java Collections Framework (JCF) at some point in
their career. It has enabled us to solve complex problems in an efficient and standardized
manner.

' Java Collection Hierarchy §) ByteByteGo.com

Iterable
Collection

List (ueue Set

/ “ “ \ \
Arraylist PriorityQueue EnumSet
Vector Degue SortedSet HashSet
Stack LinkedList ArrayDeque TreeSet LinkedHashSet

JCF is built upon a set of interfaces that define the basic operations for common data structures
such as lists, sets, and maps. Each data structure is implemented by several concrete classes,
which provide specific functionality.

Java Collections are based on the Collection interface. A collection class should support basic
operations such as adding, removing, and querying elements. Through the enhanced for-loop or
iterators, the Collection interface extends the Iterable interface, making it convenient to iterate
over the elements.

The Collection interface has three main subinterfaces: List, Set, and Queue. Each of these
interfaces has its unique characteristics and use cases.

Java engineers need to be familiar with the Java Collection hierarchy to make informed
decisions when choosing the right data structure for a particular problem. We can write more

efficient and maintainable code by familiarizing ourselves with the key interfaces and their

implementations. We will undoubtedly benefit from mastering the JCF as it is a versatile and
powerful tool in our Java arsenal

Over to you: You may noticed that Map did not appear in the picture. Do you know why?

Twitter 1.0 Tech Stack

This post is based on research from many Twitter engineering blogs and open-source projects. If
you come across any inaccuracies, please feel free to inform us.

l % Twitter 1.0 Tech Stack £) blogbytebytego.com

— swift K Kotlin PWA

Mobile
_J: A (‘\
— I=] @HReact &D
Wb A Redux
i E}E‘E; MESOS Finagle < JvMm
Services

Q Pelikan Cache e redis

Backend Caching R
MySaL @ PostgreSOL
—> 5
(e)Manhattan FlockDB MetricsDB
Databases

i

ésmck I §g Apache Kafka Kestrel

Messaging
» T
®HERON Gh% +ableau
—
| 2
Data Processing ’ SummingBird wcaldlng

— C-TiEmEEm Blobstore

Data Storage

— aws)

Data Cen:cars Twitter Data Center Google Cloud

Big Data

o

0

— X Puppet Audubon Wilson

Tools

Mobile: Swift, Kotlin, PWA

Web: JS, React, Redux

Services: Mesos, Finagle

Caching: Pelikan Cache, Redis

Databases: Manhattan, MySQL, PostgreSQL, FlockDB, MetricsDB
Message queues: Kafka, Kestrel

Data processing: Heron, Flume, Tableau, SummingBird, Scalding
Data storage: Hadoop, blob store

Data centers: Twitter data center, AWS, Google Cloud

Tools: Puppet, Audubon, Wilson

Linux file permission illustrated

' Linux File Permissions D) blog bytebytego.com

Binary Octal String Representation Permissions

000 0 (0+0+0) -— No Permission

001 1 (0+0+1) --x Execute

010 2 (0+2+0) -w- Write

011 3 (0+2+1) -wx Write + Execute
100 4 (4+0+0) r-- Read

101 5 (4+0+1) r-x Read + Execute
110 6 (4+2+0) rw- Read + Write

111 7 (4+2+1) rwx Read + Write + Execute

Owner Group Other

rwxrw-r-x

r | Read 4 r | Read 4 r | Read
Write or Edit 2 7 w | Write or Edit 2 6 - No Permission 0 5
x Execute 1 - No Permission 0 X | Execute 1

Ownership
Every file or directory is assigned 3 types of owner:

e Owner: the owner is the user who created the file or directory.

® Group: a group can have multiple users. All users in the group have the same
permissions to access the file or directory.

e Other: other means those users who are not owners or members of the group.

Permission
There are only three types of permissions for a file or directory.

e Read (r): the read permission allows the user to read a file.
e Write (w): the write permission allows the user to change the content of the file.

e Execute (x): the execute permission allows a file to be executed.

Over to you: chmod 777, good idea?

What are the differences between a data warehouse and a data lake?

The diagram below shows their comparison.

' Data Warehouse vs Data Lake) blog.bytebytego.com

Data Warehouse Data Lake
" Structured Data i RS]
. . . " Structured Data % { Semi-Structured Data * |
. =
Products Payments . l—J 0
i ssain] Emails Tweols
[Extract]
\ / Unstructured Data
Transform P i
Vs
Data Wa Replicate
[swgng | |
[Summary J g
[Metadata]
| Reporting | | Analytics | | : H i | Reporting | | Anal) { : |
_.\l..spo |n53/ \ -na)r[l s/" axg_earnmg_ /-'I '-t__ S0 m?,s \§ L 3‘1"‘:? i -.\&garmng)i
End UIEI'S End Users_._;E

e A data warehouse processes structured data, while a data lake processes structured,
semi-structured, unstructured, and raw binary data.

e A data warehouse leverages a database to store layers of structured data, which can be
expensive. A data lake stores data in low-cost devices.

e A data warehouse performs Extract-Transform-Load (ETL) on data. A data lake performs
Extract-Load-Transform (ELT).

e A data warehouse is schema-on-write, which means the data is already prepared when
written into the data warehouse. A data lake is schema-on-read, so the data is stored as
it is. The data can then be transformed and stored in a data warehouse for consumption.

Over to you: Do you use a data warehouse or a data lake to retrieve data?

10 principles for building resilient payment systems (by Shopify).

Shopify has some precious tips for building resilient payment systems.

' How does Shopify Build Resilient Payment Systems? [blog.bytebytego.com

E 10 Tips ﬂ

" r 1 -
o : ’ ' ULID: '
) L’“FFY;W Timeouts s:u:e _513“""3 Use Idempotency Universally Unique Lexicographically
all early rite: 1 seco Keys Sortable Identifier
Install Circuit o “Sha financial
Breakers m e
. Little's Law Incorporate Load Simatig E@
. I |
Understand Capacity capacity = throughput x latency Testing ?E:hfnmz yste:
Add Monitoring and H -Ll—:;?;fg ‘ Incident Manager on Call
: Incident ment |SF0IES '« Support Response Manager
Alerting : g::z:ﬁon Nenage * Service Owners
Implement "o key-value pairs or JSON Organize Incident 2 Em Tnﬁﬂmlymhaﬁﬁﬁmm
Structured Logging | | '» add correlation_id for tracing Retrospectives * What can we do to prevent?

1. Lower the timeouts, and let the service fail early
The default timeout is 60 seconds. Based on Shopify’s experiences, read timeout of 5
seconds and write timeout of 1 second are decent setups.

2. Install circuit breaks
Shopify developed Semian to protect Net::HTTP, MySQL, Redis, and gRPC services with a
circuit breaker in Ruby.

3. Capacity management
If we have 50 requests arrive in our queue and it takes an average of 100 milliseconds to
process a request, our throughput is 500 requests per second.

4. Add monitoring and alerting
Google’s site reliability engineering (SRE) book lists four golden signals a user-facing
system should be monitored for: latency, traffic, errors, and saturation.

5. Implement structured logging
We store logs in a centralized place and make them easily searchable.

6. Use idempotency keys
Use Universally Unique Lexicographically Sortable Identifier (ULID) for these
idempotency keys instead of a random version 4 UUID.

7. Be consistent with reconciliation
Store the reconciliation breaks with Shopify’s financial partners in the database.

8. Incorporate load testing
Shopify regularly simulates the large volume flash sales to get the benchmark results.

9. Get on top of incident management
Each incident channel has 3 roles: Incident Manager on Call (IMOC), Support Response
Manager (SRM), and service owners.

10. Organize incident retrospectives
For each incident, 3 questions are asked at Shopify: What exactly happened? What
incorrect assumptions did we hold about our systems? What we can do to prevent this
from happening?

Reference: 10 Tips for Building Resilient Payment Systems

https://shopify.engineering/building-resilient-payment-systems

Kubernetes Periodic Table

A comprehensive visual guide that demystifies the key building blocks of this powerful container

orchestration platform.

| Kubernetes Periodic Table § blog.bytebytego.com
(O Infrastructure and Control Plane © Backup, Restore, and Disaster Recovery O Continuous Integration and Deployment
O Core Components O Security and ldentity Management O Autoscaling and Load Balancing
© Configuration and Data Management () Governance and Compliance O Resource Management
1 2
No © Other Elemants © Networking () Package Management and Configuration Sa
i O Menitoring and Observability O Stateful Applications and Data Management Pl
3 4 5] 7] E] 0
Op Ci Br Rb Psp Rbm lam Csi
e D e g e e el o
n L1 3 LB 1 16 Lk 1]
Cp Pd Dr Cmp Au Az En Pvc
ot o | G i s o, -
18 om Ea] F-3 23 F21 25 28 ar 28 m ko n Az = 3 = a6
Kt Sv Cim 5t Ct Nm Cb Cils Cma Crv Ms Lg Al Pe Pm Fw Sct Crd
e Swr || e Sl ewew L GEIY ouies DSWORS DEUTETY keatem Lo Akloen T, e ——
a a8 k) 40 a1 @2 43 Eed a5 &5 47 &3 45 50 1] 52 G4
As Dp Sc Ds Sh Cm Ru Mis Esg Pep Pms La Sm Is Pmo Pr Km Csd
i e Dt Beekde Gt g Gaalew D o Proreies A ot Motk - Foey o i
L] ey Mepwy Urmee
] 58 &7 1 58 L] a1 (- B3 (2] 85 B8 &7 BA -] i) al "2
Et Rs Ig Jb Spe Rp Kn Gp Ac Aw Gf Tr Np Dn le im Es Vs
wer [— f— ™ o [ERS— [[Rry— — S [Taing [- Y [e . s [trer
73 74 75 TE s -} k] &0 B a2 B3 84 BS 86 -8 B8 -] 80
Ke Ns Pv Cj Lt Lp Cbs Tm Caw Azw Ev Ot Smp Ag Ed Ch Sp Vsc
o leesa | N G ey e DT s e ATy et O ingsen eainr ey oy e
8 a2 o o4 o o8 o o @ 100 101 102 108 104 108
Ci Cd Go Cnd Bg Rud Ca Goo Cat Bp MNap Hpa Vpa Cas Lb
i et | e | G| ot S O, | TERCTES DOur| jiie faticmai Puine daaa LD
10e 1z 108 108 110 m 1"mz na 114 nus 18 nr na 18 120
Rqy RIs Rm Ra Pa Paa MNa Nsr Tt Pdb Ge Hm Ku Of | Cs
| WS W S——— :.:.3 F—— Faci Aty b, Fock Ay Hock Bessci b e oo Hder Fusherace = Gty By

This Kubernetes Periodic Table sheds light on the 120 crucial components that make up the

Kubernetes ecosystem.

Whether you're a developer, system administrator, or cloud enthusiast, this handy resource will
help you navigate the complex Kubernetes landscape.

Evolution of the Netflix APl Architecture

Evolution of an API Architecture

Direct Access

The Netflix API architecture went through 4 main stages.

- Monolith

- Direct access

- Gateway aggregation layer
- Federated gateway

We explain the evolution in a 4-minute video. Watch and subscribe here:
https://Inkd.in/e9yycpU6

https://lnkd.in/e9yycpU6
https://lnkd.in/e9yycpU6

Where do we cache data?
Data is cached everywhere, from the front end to the back end!

This diagram illustrates where we cache data in a typical architecture.

| Where do We Cache Data?) blog bytebytego.com

Client App

h &

Client-side
Cache

Disk Cache Disk Cache

=4

WAL (write-
ahead log) Fiagricet

Materialized Transaction
View Log

Replication
® il

There are multiple layers along the flow.

Client apps: HTTP responses can be cached by the browser. We request data over HTTP for the
first time, and it is returned with an expiry policy in the HTTP header; we request data again,
and the client app tries to retrieve the data from the browser cache first.

CDN: CDN caches static web resources. The clients can retrieve data from a CDN node nearby.
Load Balancer: The load Balancer can cache resources as well.

Messaging infra: Message brokers store messages on disk first, and then consumers retrieve
them at their own pace. Depending on the retention policy, the data is cached in Kafka clusters
for a period of time.

Services: There are multiple layers of cache in a service. If the data is not cached in the CPU
cache, the service will try to retrieve the data from memory. Sometimes the service has a

second-level cache to store data on disk.

Distributed Cache: Distributed cache like Redis hold key-value pairs for multiple services in
memory. It provides much better read/write performance than the database.

Full-text Search: we sometimes need to use full-text searches like Elastic Search for document
search or log search. A copy of data is indexed in the search engine as well.

Database: Even in the database, we have different levels of caches:
- WAL(Write-ahead Log): data is written to WAL first before building the B tree index
- Bufferpool: A memory area allocated to cache query results
- Materialized View: Pre-compute query results and store them in the database tables for
better query performance
Transaction log: record all the transactions and database updates

Replication Log: used to record the replication state in a database cluster

Over to you: With the data cached at so many levels, how can we guarantee the sensitive user
data is completely erased from the systems?

Top 7 Most-Used Distributed System Patterns |

Ambassador - Circuit Breaker Leader Election

o 1

- Ambassador

- Circuit Breaker

- CQRS

- Event Sourcing

- Leader Election

- Publisher/Subscriber
- Sharding

Which additional patterns have we overlooked?

How much storage could one purchase with the price of a Tesla Model
S? |

There's a trade-off between the price of a storage system and its access latency. Naturally, one
might wonder how much storage could be obtained if one is willing to sacrifice latency.

1 Tesla Model S = How much storage? @ ByteByteGo.com
Storage
size LAy
136 1 ne L1 cache
136 10 we L= cache
RAM a A :
\ 40 T | 100 ne cotss S——
1 ps
ﬂ < 10 us | Send data over L __Mewmcached sewd data over 150ps network .
id bi
o 320 T | 100 ps read from SSD «—————RocksP® read g pocksDB
1 ms Database Lnsert «———Postgresql stcrt@
L. 3P 10 we HDD disk seek - Z.0om oall 0
— note LN
100 ws packet CA->NL->CA o
1s . Refreshintkerval I8
10 s vebriy/refresh interval

To make this calculation more intriguing, let's use the price of a Tesla Model S as a benchmark.
Here are the relevant prices:

Tesla Model S: $87,490 per car
L1 cache: $7 per megabyte

L2 cache: $7 per megabyte
RAM: S70 for 32G

SSD: S35 for 128G

HDD: $350 for 12T

How to choose between RPC and RESTful?

RPC vs. RESTful) ByteByteGo.com
RPC RESTful
B
Coupling Strong coupling Weak coupling
Pt oreninr thrift, :—i:;?uﬁ Avro xmle?rfsom
Communication protocol TCP HTTP/1.1, HTTP/2
Performance High Lower than RPC
Interface definition language thrift, protobuf Swagger
(IDL)
Client code generation Auto-generated stub Auto-generated stub
Language framework gRPC, thrift SpringMVC, JAX-RS
Developer friendness not human readable human readable
hard to debug easy to debug

Communication between different software systems can be established using either RPC
(Remote Procedure Call) or RESTful (Representational State Transfer) protocols, which allow
multiple systems to work together in distributed computing.

The two protocols differ mainly in their design philosophy. RPC enables calling remote
procedures on a server as if they were local procedures, while RESTful applications are
resource-based and interact with these resources via HTTP methods.

When choosing between RPC and RESTful, consider your application's needs. RPC might be a
better fit if you require a more action-oriented approach with custom operations, while RESTful
would be a better choice if you prefer a standardized, resource-based approach that utilizes
HTTP methods.

Over to you: What are the best practices for versioning and ensuring backward compatibility of
RPC and RESTful APIs?

Netflix Tech Stack - Databases

The Netflix Engineering team selects a variety of databases to empower streaming at scale.

Databases used in NETFLIX §) ByteByteGo.com
Use Case
ACID) Multi-activetopology/Global
Trabsactions —— Il } E : B;”mg Transaction/Data Pipeline Workflow
(oLTP) : W\ (]
Structured Relational iy
Use
Case ﬁﬁﬁ E Data Storage Data Pipeline Data Visualization
Analytics e druid Sporig S
{OLAP) Columnar tobleau
o——
EI:I -’
Dictionary —» o— Homepage,/Recom mendation, etc s EVCache
- Key-Value Caching & Netflix
2
=}
Data E a 2-D Key-Value Eg E o
Type @ i =] = .
A b Content/Streaming/Devices V)
E P - cassandra
& Wide-Column
Y Y
n-memory metrics
e W Altas
Time Series
Document
Almost everything about search -
Use Q (e.g:Content Graph Search/ -
Medla Guery) i
Case e et ry elasticsearch
- [amazon
i
Unstructured ey Content/Streaming/Devices * g3

(Image/Video/Audio/Text File etc.)

Relational databases: Netflix chooses MySql for billing transactions, subscriptions, taxes, and
revenue. They also use CockroachDB to support a multi-region active-active architecture, global
transactions, and data pipeline workflows.

Columnar databases: Netflix primarily uses them for analytics purposes. They utilize Redshift

and Druid for structured data storage, Spark and data pipeline processing, and Tableau for data
visualization.

Key-value databases: Netflix mainly uses EVCache built on top of Memcached. EVCache has
been with Netflix for over 10 years and is used for most services, caching various data such as
the Netflix Homepage and Personal Recommendations.

Wide-column databases: Cassandra is usually the default choice at Netflix. They use it for almost
everything, including Video/Actor information, User Data, Device information, and Viewing
History.

Time-series databases: Netflix built an open-source in-memory database called Atlas for metrics
storage and aggregation.

Unstructured data: S3 is the default choice and stores almost everything related to
Image/Video/Metrics/Log files. Apache Iceberg is also used with S3 for big data storage.

If you work for a large company and wish to discuss your company's technology stack, feel free
to get in touch with me. By default, all communications will be treated as anonymous.

The 10 Algorithms That Dominate Our World

The diagram below shows the most commonly used algorithms in our daily lives. They are used
in internet search engines, social networks, WiFi, cell phones, and even satellites.

| The 10 Algorithms That Dominate Our World {J blog.bytebytego.com

bubble sort qui!‘.‘k sort internet WiFi search shortest path in
merge sort heap sort smartphone salellites

Hi, Dr. EFzabeth?
Yech, vh.. T acadm;l, o
Ahe Furiee transfocm &f iy ot

Integer Factorization Link Analysis

search engine social network airplane automobile
cryptography
marketing analysis cellphone satellite

BE=END

/w

Data Compression Random Number
Algorithms Generation

JPEG MPEG cryptography video games An algorithm is thus a sequence of
computational steps that transform the
input into the output.

G - Introduction to Algorithms
A

ZIP MP3 Al finances

1. Sorting
2. Fourier Transform and Fast Fourier Transform
3. Dijkstra’s algorithm

RSA algorithm

Secure Hash Algorithm

Integer factorization

Link Analysis

Proportional Integral Derivative Algorithm
Data compression algorithms

10 Random Number Generation

©w N U A

Over to you: Any other commonly used algorithms?

What is the difference between “pull” and “push” payments?

The diagram below shows how the pull and push payments work.

Pull vs Push Payments) blogbytebytego.com

Pull Payment

-m/"@_;wipe card\
2 GE
Cardholder Merchant
Card Scheme \
@ notify cardholder VISA @ send to acquirer
2N 7 Pt
| g‘\(asand to issuing ‘@send to curd/g
% : bank network 3z
-, Issuing Bank Acquiring Bank

Push Payment

visa [

a =
Cardholder Merchant
(Supplier)

Card Scheme \
@ credit account VISA @ initiate payment
and notify cardholder

X L ¢
N 4 N
&\®send to issuing ‘ésubmn'rOCT/ m
Texid bank transaction ', G

ing Bank , Acquiring Bank

When we swipe a credit/debit card at a merchant, it is a pull payment, where the money
is sent from the cardholder to the merchant. The merchant pulls money from the
cardholder’s account, and the cardholder approves the transaction.

With Visa Direct or Mastercard Send, the push payments enable merchant, corporate,
and government disbursements.

Step 1: The merchant initiates the push payment through a digital channel. It can be a mobile
phone or a bank branch etc.

Step 2: The acquiring bank creates and submits an OCT (Original Credit Transaction) to the card
scheme.

Step 3: The transaction is routed to the receiving institution.

Step 4: The issuing bank credits the cardholder’s account and notifies the cardholder. The
money is deposited into a Visa account that can be accessed at an ATM or PoS terminal or a
digital wallet.

Note that the push payments work for cross-border transactions.

Push payments are indeed an interesting innovation, which complements the digital wallet
strategy in Visa and Mastercard. The abstraction of “account” masks the complication of

different funding or consuming channels.

Over to you: What is your most frequently used payment method? Is it pull-based or
push-based?

ChatGPT - timeline

A picture is worth a thousand words. ChatGPT seems to come out of nowhere. Little did we
know that it was built on top of decades of research.

The diagram below shows how we get here.

|ChatGPT - How we get here? blog.bytebytego.com

Simple processing based
on rules and models

‘ Data classification }

Imitate the human brain for
labeling and training

CNN (Convolutional Neural
Network

cur eura
Network])
enerative ersarial
MNetwork)

Focus on human brain
learning processes

g“;.? 'B'E‘["HT"" - Train with large amount of data
3 - Feedback from people becomes
e the learning content

R

2018 0.1 billion
| EERT | 3 ||_gPT-1_Jparameters

RoBERTa BART

! '

XLM M2m-100

)
e) (B)

omerr)

"Attention is all you need"]

2019 1.5 billion
GPT-2)parameters

020 175 billion
GPT-3 |parameiers

- 1950s
In this stage, people still used primitive models that are based on rules.

1980s
Since the 1980s, machine learning started to pick up and was used for classification. The
training was conducted on a small range of data.

1990s - 2000s
Since the 1990s, neural networks started to imitate human brains for labeling and
training. There are generally 3 types:
- CNN (Convolutional Neural Network): often used in visual-related tasks.
- RNN (Recurrent Neural Network): useful in natural language tasks
- GAN (Generative Adversarial Network): comprised of two networks(Generative
and Discriminative). This is a generative model that can generate novel images
that look alike.

2017
“Attention is all you need” represents the foundation of generative Al. The transformer
model greatly shortens the training time by parallelism.

2018 - Now

In this stage, due to the major progress of the transformer model, we see various
models train on a massive amount of data. Human demonstration becomes the learning
content of the model. We've seen many Al writers that can write articles, news,
technical docs, and even code. This has great commercial value as well and sets off a
global whirlwind.

Why did Amazon Prime Video monitoring move from serverless to
monolithic? How can it save 90% cost?

' Amazon Prime Video monitoring - From Serverless to Monolithic

§) blog.bytebytego.com

Serverless Monolithic - Saves 90% Cost
e d
User User \

Amazon SNS

l audio/video streams

o £]
Converter frames E Orchestration

Amazon S3

i audiovideo
i i streams frames analyze

Amazon SNS

Media
Converter

defects Entry Point Defect Detector

S S ,,s'
® ® @

iStsp Function Step Function Step Function 5 l
: HE -
Aggregation b
Amazon ECS§ H
... (Single Process) : :
[. aggregated
Result EO I
Agoregetion Defect Detector | results
: (Distributed) : !
aggregated results

Amazon S3 Amazon S3

Based on: https://primevideotech.com/

In this video, we will talk about:

- What is Amazon Prime Video Monitoring Service

- What is the problem with the old serverless architecture
- How the monolithic architecture saves 90% cost

- What did Amazon leaders say about this

Watch and subscribe here:_https://Inkd.in/eFaVeRij

https://lnkd.in/eFaVeRij

What is the journey of a Slack message?

| The Journey of =Slack Message

H\ i

e WebSocket push Send message

= Main Region
@_@ envoy -*9- ﬁ WebApp
A I

send message to
WebSocket
subscribers *

Gateway Admin
S -

|
Edge Region \ (4]
(5) route to

send message channel server
to subscribers

:ég Channel
o Server
<
Cé’g Channel
o Server
[]
I
o
o

céo Channel
Server

3

Consistent
Hashing

N
hY

send channel message

Redrawn by §) ByteByteGo
a WebSocket push

A

send message to
WebSocket
subscribers

Gateway
Server
Edge R

egion

e/

send message
to subscribers

N,

b
S Channel
o Server

cég Channel
o Server
F
7

g Channel
o Server

In a recent technical article, Slack explains how its real-time messaging framework works. Here

is my short summary:

® Because there are too many channels, the Channel Server (CS) uses consistent hashing
to allocate millions of channels to many channel servers.
e Slack messages are delivered through WebApp and Admin Server to the correct Channel

Server.

e Through Gate Server and Envoy (a proxy), the Channel Server will push messages to
message receivers.

o Message receivers use WebSocket, which is a bi-directional messaging mechanism, so
they are able to receive updates in real-time.

A Slack message travels through five important servers:

WebApp: define the API that a Slack client could use
Admin Server (AS): find the correct Channel Server using channel ID
Channel Server (CS): maintain the history of message channel

Gateway Server (GS): deployed in each geographic region. Maintain WebSocket channel
subscription

e Envoy: service proxy for cloud-native applications

Over to you: The Channel Servers could go down. Since they use consistent hashing, how might
they recover?

How does GraphQL work in the real world?

The diagram below shows how LinkedIn adopts GraphQL.
| How GraphQL Works in LinkedIin? ~ Redrawnby

blog.bytebytego.com
(YA

Client Owners

mple query

[
@ release client

memherById {
id: "urn:li:member:123"

st queries
} {

\ eemmn query
“name ¢
i employer {., - E Q = g 03
Lo

Released Clients GraphiQL Build & Release

® registereci query ID /

(2) raw query

publish query

Eﬂ:ﬁ

retrieve query -

fgraphql B
- Ty ~
(imerbes
¢ [query 1 |
ImemberSkills

E—
Identity Services Organization Services

Frontend API Server

Based on LinkedIn Engineering Blog

“Moving to GraphQL was a huge initiative that changed the development workflow for
thousands of engineers...” [1]

The overall workflow after adopting GraphQL has 3 parts:

e Partl-Edit and Test a Query
Steps 1-2: The client-side developer develops a query and tests with backend services.

® Part 2 - Register a Query
Steps 3-4: The client-side developer commits the query and publishes the query to the
query registry.

e Part 3 - Use in Production
Step 5: The query is released together with the client code.
Steps 6-7: The routing metadata is included with each registered query. The metadata is
used at the traffic routing tier to route the incoming requests to the correct service
cluster.
Step 8: The registered queries are cached at service runtime.
Step 9: The sample query goes to the identity service first to retrieve members and then
goes to the organization service to retrieve company information.

LinkedIn doesn’t deploy a GraphQL gateway for two reasons:
1. Prevent an additional network hop
2. Avoid single point of failure

Over to you: How are GraphQL queries managed in your project?

Reference: How LinkedIn Adopted A GraphQL Architecture for Product Development

https://www.linkedin.com/blog/engineering/architecture/how-linkedin-adopted-a-graphql-architecture-for-product-developm

Important Things About HTTP Headers You May Not Know!

HTTP requests are like asking for something from a server, and HTTP responses are the server's

replies. It's like sending a message and receiving a reply.

What's inside the HTTP Header?

Expected response content type

\ HTTP Request Header
Response content encoding _
i Accept : image/webp
T
Send cookies to server Accept-Encoding: gzip

> Cookie : name=ByteBytego
Cache-Control : max-age=604800

max age for cache (seconds)
Content-Type : text/ntml

which link generated the request Conteft-Length : 30
"™ Referdr : hf'tps://bytebytego.com
browsertype —
— " User-
1 HTTP Response Header
Client Browser Access-Control-ALlow-Origin : *

Alt-Sve : h2=":433"; ma=604800
Cache-Control : max-age=604800

whether the response can be shared Content-Type : image/webp

. . Content-Length : 30
Anther server is authorative as well 9

NN

Date | Mon,\29 May 2023 17:15:36 GMT
max age for cache (seconds) Set-Cobkie :\name=alex

: i Server :
response creating time

send cookie from server to client

server software

) ByteByteGo.com

An HTTP request header is an extra piece of information you include when making a request,
such as what kind of data you are sending or who you are. In response headers, the server
provides information about the response it is sending you, such as what type of data you're

receiving or if you have special instructions.

A header serves a vital role in enabling client-server communication when building RESTful
applications. In order to send the right information with their requests and interpret the

server's responses correctly, you need to understand these headers.

Over to you: the header “referer” is a typo. Do you know what the correct name is?

Think you know everything about McDonald's? What about its
event-driven architecture €9?

Reliable event processing

=1
E&

Standby Event Store

McDonald's standardizes events using the following components:

- An event registry to define a standardized schema.
- Custom software development kits (SDKs) to process events and handle errors.

An event gateway that performs identity authentication and authorization.

Utilities and tools to fix events, keep the cluster healthy, and perform administrative
tasks.

To scale event processing, McDonald uses a regional architecture that provides global
availability based on AWS. Within a region, producers shard events by domains, and each
domain is processed by an MSK cluster. The cluster auto-scales based on MSK metrics (e.g., CPU
usage), and the auto-scale workflow is based on step-functions and re-assignment tasks.

How ChatGPT works technically

We attempted to explain how it works in this video. We will cover:

Large Language Model
GPT-3.5

Fine-tuning

Prompt engineering
How to answer a prompt

How does ChatGPT-like System Work?

£) ByteByteGo.com

[z . ™
@ Training
] Parameters:1758
: Training tokens:300B :
: Vocab size: -50K |
g Complie ey
: . | to four. | :
Pretraining two plus two is - equal to four. :
Internet data(300B tokens)
optimize using
collect data train a I t leaming ;
= and fine-tune reward model (PPO algorithm)
Stage 2: GPT 3.5 Finetuned »| Reward ChatGPT
Fine-tuning) GFT model i | Model
= == AM PPO
Demonstration|
data “ % i
[=y
@ Answer a prompt
a new prompt
LeetCode: longest common string
3.N
ChatGPT Model
A4
@ B6.N Template response generation
6.Y l
longest common string is the Sorry,l am not trained to provide
Response - ;
problem of... medical advise.
_ J

Watch and subscribe here (YouTube video):_https://Inkd.in/eNAUnWup

https://lnkd.in/eNAUnWup

Choosing the right database is probably the most important technical
decision a company will make.

I Database Selection Process @ blog.bytebytego.com

Pattern OR
—_—
relationships?

04\4‘ Unstructured | saL ‘ l NoSQL | l Now J

Semi-Structured [NewSaL l [Time-series, etc]

Datasize?

Back-of-the-
envelop

Long Term ‘

‘ Structured

Amptibh : Concurrent Write / Read

Latency? Users? Heavy?
Query Opt. # | Response Time l Off-Peak Q-L' [Peak Sharding ‘ l Read Replicas
Part. Table { . Opt. Indexes Batch-Process Caching

—p —
0 s 0
Encryption Auditing Cloud Providers + l Cloud Native | Docs [Forums I
| API & Libraries 1 Community l [Enterprise I

In this three-part newsletter series, we will dive deep into:

- Examining the types of data our project will handle.

- Considering the expected volume of data the project will generate.

- Evaluating the anticipated number of concurrent users or connections.

- Carefully assessing performance and security requirements.

- Considering any existing systems, tools, or technologies that will need to integrate with
the chosen database.

Over to you: What kinds of databases have you used before, and why were they chosen?

How do you become a full-stack developer?

The diagram shows a simplified possible full-stack tech stack.

What Full Stack Development Requires?
f) blog.bytebytego.com

@‘g

Mobile Web
Development Development

DevOps

{API Gateway} 7Y GraphoL } (Web Socket J

... APIGateways: docker
@y REST Cloud : i] Email : .
API Functions ..—h > sms Q}glt

Jenkins

. Backend Services | External Services |

S i

i Database File Storage Multimedia

Storage :

Full stack development involves developing and managing all layers of a software application,
from user interfaces to storage.

Full-stack developers need to have a broad range of technical skills including:

e Front-end development - HTML, Javascript, CSS, popular frameworks (React, Vue).

e API gateways - REST API gateway, GraphQL, web socket, webhook. Basic knowledge of
firewall, reverse proxy, and load balancer.

e Backend development - Sever-side languages (Java, Python, Ruby), API designs,
serverless cloud interactions.

e Storage - Relational databases, NoSQL databases, file storage, multimedia storage.

® External Services - Email and SMS interactions.

® DevOps skills - Full stack developers need to take care of the full lifecycle of
development, including testing, deployment, and troubleshooting.

Over to you: What's your favorite full-stack setup?

What’s New in GPT-4

Al is evolving at a scary pace. | dove deep into the GPT-4 Technical Report and some videos, and
here's what's fresh.

What's New In GPT-4 f) blog.bytebytego.com
Multimodal Increased Word Limit
<5,
B B %
Text Image Text
& ",

GPT-3 GPT-4 ChatGPT GPT-4
Great performance on More creative &
academic benchmarks collaborative
,‘b% -_ 99%

- ®

%, E
= v

BAR exam Biology Olympiad

Better Safety Not so open

((

dataset construction

v O

training compute

architecture

- Multimodal: support both image and text

- Increased word limit to 25,000

- Human-level performance on academic benchmarks

- More creative & collaborative

- Better safety

- Not so open: no further details about the architecture, hardware, training compute, etc.

Backend Burger

Everyone loves burgers, whether it's a full stack burger, a frontend burger, or a backend burger.

8 blog.bytebytego.com

Cl/CD Tools

« Github Actions

Backend Burger

Containerization g

» Docker)
+ Containerd T
. LXC - ArgoCD
Architectural Patterns APls
- Microservice - REST
- Monolithic + GraphQL
+ Serverless - tRPC
Version Control Caching, Testing
el + CDN + Integration Testing
- Gitlab B : -
- Browser cache - Unit Testing
- BitBucket - Redis - Functional Testing
+ Memcached
__)/‘lr
- Next.js B
+ Flask
e . .—~ Database
+ Express.js
* Laravel Relational Non relational
- PostgreSQL - MongoDB
: ,- - MySQL Firebase
Prngrammmg Languages e | SN
- Java - C# i)
- Python - Javascript/Typescript
* Ruby - Go
- PHP - Rust

While the origin of this innovative burger is unknown, a comparable full-stack burger was
shared on Reddit four years ago. We want to give a special shout-out to the original creators.

Watch & subscribe full video here:_https://Inkd.in/eFKe4gHd

https://lnkd.in/eFKe4gHd

How do we design effective and safe APIs?

The diagram below shows typical API designs with a shopping cart example.

| Design Effective & Safe APIs

@ blog.bytebytego.com

Design a Shopping Cart

Use resource
names (nouns)

e GET /querycarts/123 0 GET /carts/123

Use plurals

Q GET /cart/123

GET /earts/123

Idempotency

e POST /carts

POST /carts
{requestId: 4321}

Q GET /fcarts/vl/123

Use versioning GET /vi/carts/123
Query after Q GET /carts?
soft deletion WET. Loure includeDeleted=true
Pagination 6 GET /carts GET /carts?
pageSize=xx&page Token=xx
Sorting @ GET /items G54 Ciemde
sort_by=time
Filtering €9 cev/irems GET /items?
filter=color:red
X-APT-KEY = xxx hmac(URL + QueryString + Expiry + Body)
Secure Access Q X-APL-KEY=xxx X-EXPIRY = xxx v

X-REQUEST-SIGNATURE = xxx —

< EN< BE<BE<NN<BE<NE<BE<BE< WX

Resource cross GET /carts/123? GET

rebsronce /carts/123/items/321

Add an item POST

to a cart 0% Loy eIy /carts/123/items:add
{itemId: "items/321"}

Rate limit Design rate limiting

rules based on IP,
user, action group etc

Note that API design is not just URL path design. Most of the time, we need to choose the
proper resource names, identifiers, and path patterns. It is equally important to design proper
HTTP header fields or to design effective rate-limiting rules within the APl gateway.

Over to you: What are the most interesting APIs you’ve designed?

Which SQL statements are most commonly used?

Must-know SQL Statements) ByteByteGo.com
Create Read Update Delete
. _I CREATE DATABASE name; DROP DATABASE name;
Daiahaée

UPDATE name

CREATE TABLE name { SET col_1 = 3 DELETE FROM name

WHERE col_3 = “a”;

col_1 int WHERE col_3 = *a”;
col_2 uar&har(zss). SEhEELE*C;{OT Tan;t_z !
Table col_3 string, =TT
ki INSERT INTO name DROP TABLE name;

VALUES (1,“a”,"b”)

CREATE INDEX index_name

el 08 name (
apr g col_1, DROP INDEX index_name
Index ; col 2,
L

A database consists of three types of objects:
- Database
- Table
- Index

Each object type has four operations (known as CRUD):
- Create
- Read
- Update
- Delete

Therefore, there are a total of 12 categories of SQL statements. Some categories have been
excluded from the graph because they are less commonly used. It is highly recommended that
you become familiar with the remaining categories.

Over to you: | did not mention SQL statements related to transactions. In which categories do
you think they should be included?

Two common data processing models: Batch v.s. Stream Processing.
What are the differences?

The diagram below shows a typical scenario with user clicks:
e Batch Processing: We aggregate user click activities at end of the day.
e Stream Processing: We detect potential frauds with the user click streams in real-time.

Batch v.s. Stream

@ blog.bytebytego.com

Processing
Eﬁme-boundedl Mapper Shuffle & Reducer Qutput
i Input Data i
Map Resultj—nu_
/ Reduce
User Clicks [5—__ | Result
Map Result ot]
 (Bob, login, 2)
() i Final Result
User Clicks IMap Hesultl’
\ -:Boblogmz)
— | Map Result .(NIOE, browse catalog, 1)
i / '
— / TTATN i
Map Result (Alice, browse catalog, 1)

(Bob, t1, login, 1)

(Alice, t2, browse catalog, 1)

(Bob, t3, login, 1)

Batch Processing

- Aggregate user activities

Vs
St P i (
: himaicas - Decision-
Unbounded Messaging making Engine
Click Streams i — =/
Filtering
T :
Aggregation
M Index/Cache
Update

Stream Processing

- Real-time fraud detection

1. Input

Both processing models are used in big data processing. The major differences are:

Batch processing works on time-bounded data, which means there is an end to the input
data.

Stream processing works on data streams, which doesn’t have a boundary.

2. Timelineness
Batch processing is used in scenarios where the data doesn’t need to be processed in
real-time.

Stream processing can produce processing results as the data is generated.

3. Output
Batch processing usually generates one-off results, for example, reports.

Stream processing’s outputs can pipe into fraud decision-making engines, monitoring
tools, analytics tools, or index/cache updaters.

4. Fault tolerance
Batch processing tolerates faults better as the batch can be replayed on a fixed set of
input data.

Stream processing is more challenging as the input data keeps flowing in. There are some
approaches to solve this:

a. Microbatching which splits the data stream into smaller blocks (used in Spark);
b. Checkpoint which generates a mark every few seconds to roll back to (used in Flink).

Over to you: Have you worked on stream processing systems?

Top 10 Architecture Characteristics / Non-Functional Requirements
with Cheatsheet

Did we miss anything?

Architectural Characteristics
| oratioral —w.mo_p, : _______ ! DIumilF\aiI.lm ' .a\‘,‘\,.

'-'""‘"I" rapul:nﬂarna

[ey L T R ey |] sy |) complane

res—— © Compliance :
,—|_. SR R i{g e
.lmnuniulim!.| 'Cnr“l!aﬂnnai

—
kuin!:llrp
j— - Authorzation |
[R

e
umu e — S
| Replicatien |
| Merss o r
Monitaring e | Fault Tolarance
: | 1 | e
e e — © [ey |
- iy _j"
T Ruavarabity

A e :
i Rusiiny e
i

ot ik] I l h—+ Configurability |——#! Compatibity
Partability

U Teswbily
St Maintainability —{: __________________ -
| Ease of Development

Written by Love Sharma, our guest author. You can find the full article here.

https://blog.devgenius.io/top-10-architecture-characteristics-non-functional-requirements-with-cheatsheat-7ad14bbb0a9b

Are serverless databases the future? How do serverless databases
differ from traditional cloud databases?

What is Serverless DB? £ blog.bytebytego.com
Serverless DB
snEl Gl Ik (Amazon Aurora Serverless)
[Applicaﬁon Code] [Application Code
H / \
reads writes reads

eSS RSN S A EEEE RS EESIREE R R,
000 DOO ©OOO:

@normal load @ peak load Router Fleet

auto S’“Eil"‘

P e, Headete ReadWrite Readonly Readonly
E E Eg 'II-IIlIIIlI'!IIIIIIIIIIIIIlIIIlIlIrI!IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
: Pl auto scale
Existing Aurora | :New Provisioned ; .
Databases : Databases :

___________________________ {\{\0

...DataLayer-StorageFleet i

Amazon Aurora Serverless, depicted in the diagram below, is a configuration that is auto-scaling
and available on-demand for Amazon Aurora.

® Aurora Serverless has the ability to scale capacity automatically up or down as per
business requirements. For example, an eCommerce website preparing for a major
promotion can scale the load to multiple databases within a few milliseconds. In
comparison to regular cloud databases, which necessitate the provision and

administration of database instances, Aurora Serverless can automatically start up and
shut down.

e By decoupling the compute layer from the data storage layer, Aurora Serverless is able to
charge fees in a more precise manner. Additionally, Aurora Serverless can be a
combination of provisioned and serverless instances, enabling existing provisioned
databases to become a part of the serverless pool.

Over to you: Have you used a serverless DB? Does it save cost?

Reference: Amazon Aurora Serverless

https://aws.amazon.com/rds/aurora/serverless/

Why do we need message brokers &-?

Message brokers play a crucial role when building distributed systems or microservices to
improve their performance, scalability, and maintainability.

Without Message Queue vs. With Message Queue B) ByteByteGo.com

[) o
[1in - |
o T
Sender Sender
?‘ \ » +—Decoupling
Asynchronous [
Communication "ACJl‘(a
III .|II
\ ¥
Blocking API call E? . Fault Tolerent
S
FAIRS
P N
bz %\E
¥ Y
v

[ren -]
[-]
I "

Receiver

Receiver y "
Scalability

e Decoupling: Message brokers promote independent development, deployment, and
scaling by creating a separation between software components. The result is easier
maintenance and troubleshooting.

® Asynchronous communication: A message broker allows components to communicate
without waiting for responses, making the system more efficient and enabling effective
load balancing.

® Message brokers ensure that messages are not lost during component failures by
providing buffering and message persistence.

e Scalability: Message brokers can manage a high volume of messages, allowing your
system to scale horizontally by adding more instances of the message broker as needed.

To summarize, a message broker can improve efficiency, scalability, and reliability in your
architecture. Considering the use of a message broker can greatly benefit the long-term success

of your application. Always think about the bigger picture, and how your design choices will
affect the overall project.

Over to you: there is a term called pub/sub. Are you familiar with their meanings?

How does Twitter recommend “For You” Timeline in 1.5 seconds?

We spent a few days analyzing it. The diagram below shows the detailed pipeline based on the

open-sourced algorithm.

| How does Twitter Recommend "For You" Timeline?

"For You" Timeline

AP
Pecple We Follow ST
(In-Network Source) R - Y Real Graph EarlyBird B
i ¥ N predict the likelihood of refrieve Tweets,

H o o ,1 engagement between Lucene-based index
Sﬂy W S users)
‘What Tweets dd the peaple |
GraphJet ? 1oliow recently engage with?

collaborative filtering
based on social graph
engagements
People We Don't Fellow
(Out-of-Network Sources) Yoy

©

SimClusters
calculate interest
similarities and form

Who likes similar Tweets o me,
T and what else have they recently
a7

Whal Tweets and Users are
aimilar 1o my interesta?

145k commundties In total|

communities
TwHIN Genarate antity embeddings
based on:
- User follows User
embodding-hased - User favorites Tweet
candidate generation - User clicks Ads
Candidate Sourcing

l

[Filter Own Tweets]

Filter Duplicates]

Filter Previously
Served

Filter Previously

=

Global Filtering

|

" Home Scorer In-Network Scorar Varified Author Scorar Divarsity Scorar
lowers the score for
primary lowers the score for out-of- raises the score for "consecutive Tweets by
. network Tweets “verified blue” authors & same author, topic,..."
i .
=
Heavy Ranker
- o — predict the probability
— — = an
— :
recliction =
mm ~5000 featunes 46M paramater O 10ty sumy nielme?mhhmm ht) |
neural network -
Scoring & Ranking
Visibility Authaor Content Feedback- : . .
[Filtering J [Dversity] [Balance J Lﬂaaad FaﬁgueJ [Soual ProolJ [Comrersanon% [Edned Tweeu]

Filtering

|

?

S

Who to Foliow

Mhdn.g

ByteByteGo
® mem

~500 million Tweets

~1500 candidates

Home Mixer

the pipeline
completes in under
1.5 seconds

create a balanced and
diverse feed

create “For You™

The process involves 5 stages:

e (Candidate Sourcing ~ start with 500 million Tweets

e Global Filtering ~ down to 1500 candidates

e Scoring & Ranking ~ 48M parameter neural network, Twitter Blue boost
e Filtering ~ to achieve author and content diversity

e Mixing ~ with Ads recommendation and Who to Follow

The post was jointly created by ByteByteGo and_Mem
Special thanks_Scott Mackie , founding engineer at Mem, for putting this together.

Mem is building the world’s first knowledge assistant. In next week’s ByteByteGo guest
newsletter, Mem will be sharing lessons they’ve learned from their extensive work with large
language models and building Al-native infrastructure.

https://www.linkedin.com/company/memdotai/
https://www.linkedin.com/in/mackiescott/

Popular interview question: what happens when you type “ssh
hostname”?

In the 1990s, Secure Shell was developed to provide a secure alternative to Telnet for remote
system access and management. Using SSH is a great way to set up secure communication
between client and server because it uses a secure protocol.

What happens when you type “ssh hostname” @ ByteByteGo.com

__

TCP handshake
172.67.73.33:20

& ®
Negotiate on

. protocol details .

. Send server’s .

@ ®

public key
Client authentication
password/public key
Start shell (@) !
i

. druxr-xr-x 6 Alex.xu .

i

E send command

E . 1s -al .
i

The following happens when you type "ssh hostname":
e Hostname resolution: Convert the hostname to an IP address using DNS or the local
hosts file.
® SSH client initialization: Connect to the remote SSH server.
e TCP handshake: Establish a reliable connection.

Protocol negotiation: Agree on the SSH protocol version and encryption algorithms.
Key exchange: Generate a shared secret key securely.

Server authentication: Verify the server's public key.

User authentication: Authenticate using a password, public key, or another method.
Session establishment: Create an encrypted SSH session and access the remote system.

Make sure you always use key-based authentication with SSH for better security, and learn SSH
configuration files and options to customize your experience. Keep up with best practices and
security recommendations to ensure a secure and efficient remote access experience.

Over to you: can you tell the difference between SSH, SSL, and TLS?

Discover Amazon's innovative build system - Brazil.

| How Does amazon Build System Work?) ByteByteGo

Build Config

Package
Ct+based myservice '
Build language = "C++/Java/Go/etc."

) version = "1.0/1.1/2.0/etc.”

p
Java-based myse‘rvlc'e] depends-on = {
Build pkg1=1.0;
| config pkg2 = 1.1.x;
T pkg3 =2.0;
}

I

SeE :.:nyg::?:;ba nd resolve-version-conflict = {
Build pkg99 = 1.3;

Confi

—

Local Build

Download dependent packages when they do not exist locally.

SetServl

Local builder

CMakelst txt

Remote Build

[
Download dependent artifacts built on x86

Package Builder (Build-as-a-service)

Autematically build

on Amazon linux
ARM

Download dapendent artifacts built on ARM

[VersionSetService (myservice-java-version-set)]

Amazon's ownership model requires each team to manage its own repositories, which allows
for more rapid innovation. Amazon has created a unique build system, known as Brazil, to
enhance productivity and empower Amazon’s micro-repo driven collaboration. This system is
certainly worth examining!

With Brazil, developers can focus on developing the code and create a simple-to-understand
build configuration file. The build system will then process the output artifact repeatedly and
consistently. The build config minimizes the build requirement, including language, versioning,
dependencies, major versions, and lastly, how to resolve version conflicts.

For local builds, the Brazil build tool interprets the build configuration as a Directed Acyclic
Graph (DAG), retrieves packages from the myservice’s private space (VersionSet) called
myservice-cpp-version-set, generates the language-specific build configuration, and employs
the specific build tool to produce the output artifact.

A version set is a collection of package versions that offers a private space for the package and
its dependencies. When a new package dependency is introduced, it must also be merged into
this private space. There is a default version set called "live," which serves as a public space
where anyone can publish any version.

Remotely, the package builder service provides an intuitive experience by selecting a version set
and building targets. This service supports Amazon Linux on x86, x64, and ARM. Builds can be
initiated manually or automatically upon a new commit to the master branch. The package
builder guarantees build consistency and reproducibility, with each build process being
snapshotted and the output artifact versioned.

Over to you - which type of build system did you use?

Possible Experiment Platform Architecture

The architecture of a potential experiment platform is depicted in the diagram below. This
content of the visual is from the book: "Trustworthy Online Controlled Experiments" (redrawn
by me). The platform contains 4 high-level components.

Possible experiment platform architecture

(c} Experiment Owner

@ UT or APT

to manage experiments

Experiment
System
Configuration

| Alerting —>
End User Client |Visuulizq1'ions —

(Experiment
@ Logs | Analysis Pipelines
) Jein/sort, clean,
(Instrumentation) @ L cogrenafe. analyze

1. Experiment definition, setup, and management via a Ul. They are stored in the
experiment system configuration.

2. Experiment deployment to both the server and client-side (covers variant assignment

and parameterization as well).

Experiment instrumentation.

4. Experiment analysis.

w

The book's author_Ronny Kohavi also teaches a live Zoom class on Accelerating Innovation with
A/B Testing. The class focuses on concepts, culture, trust, limitations, and build vs. buy. You can
learn more about it here: https://Inkd.in/eFHVuUAKq

https://www.linkedin.com/in/ronnyk/
https://lnkd.in/eFHVuAKq

YouTube handles 500+ hours of video content uploads every minute
on average. How does it manage this?

The diagram below shows YouTube’s innovative hardware encoding published in 2021.

How does YouTube Handle Massive Video Content Upload?

blog.bytebytego.com

Traditional Software Encoding YouTube Hardware Encoding - VCU

/ { Video Capture \ / i Video Capture | \

Server

Accelerator

| veu card [Encader] [ecoder] |
| | ve card [Encader] [Gecoder] |

e i VCU card [Encader]
EZR 1 1

: il : Cloud Storage i
......Cloud Data Center: || : Transcding Cloud Data Center |

TY Laptop Mobile T Laptop Mobile
4K 1080p ?Et}i 4K 1080p }'Eﬂi

Ll
[]

T 0%

e Traditional Software Encoding

YouTube’s mission is to transcode raw video into different compression rates to adapt to
different viewing devices - mobile(720p), laptop(1080p), or high-resolution TV(4k).

Creators upload a massive amount of video content on YouTube every minute. Especially
during the COVID-19 pandemic, video consumption is greatly increased as people are
sheltered at home. Software-based encoding became slow and costly. This means there
was a need for a specialized processing brain tailored made for video
encoding/decoding.

e YouTube’s Transcoding Brain - VCU

Like GPU or TPU was used for graphics or machine learning calculations, YouTube
developed VCU (Video transCoding Unit) for warehouse-scale video processing.

Each cluster has a number of VCU accelerated servers. Each server has multiple
accelerator trays, each containing multiple VCU cards. Each card has encoders, decoders,
etc. [1]

VCU cluster generates video content with different resolutions and stores it in cloud
storage.

This new design brought 20-33x improvements in computing efficiency compared to the
previous optimized system. [2]

Over to you: Why is a specialized chip so much faster than a software-based solution?

Reference:
[1] Warehouse-scale video acceleration: co-design and deployment in the wild
[2] Reimagining video infrastructure to empower YouTube

https://dl.acm.org/doi/abs/10.1145/3445814.3446723
https://blog.youtube/inside-youtube/new-era-video-infrastructure/

A beginner’s guide to CDN (Content Delivery Network)
A guest post by Love Sharma. You can read the full article here.

CDNs are distributed server networks that help improve the performance, reliability, and
security of content delivery on the internet.

.] .
A Beginner’s Guide to CDN §) ByteByteGo.com
TEGIES TQ ADD ED(ER
= = B -
Geographic ! Network “e Avallability of i ‘ Regulatary
: ﬁ Location ‘ Connectivity ﬁ)i:D Infrastructure o emuEhy . Compliance
1 1
CDN Edge Edge ., Cloud
(Content Delivery | — T | Servers — * Compute [+ Gaming
Network) #AnalyseData #AnalyseData #GPURendering
‘Latency | *Xbox Cloud Gaming
‘Bandwidth *Cloudflare *AWS Lambda@Edge Google Stadia
-Scalability -Fastly | -Azure Functions “NVIDI GeForce NOW
‘Cost *Akamal | *Cloudflare Workers
Availability Compliances to Conslder
When Storing data in GDM:
AR S FA TS A R S T SRS R SRR SRR AR R R S R SR SIS R A e _GDPR
: -CCPA
{] ! 5
-150/iec 27001
1 Traditional - ; ! -PCI DSS
g wep Push CON @ Private CON W Video CON |
APullBased FOriginPush REnterprize HABR

TYPES OF CDNs Secure Content
Delivery

Software Distribution

Streaming Video

Performance &

Large Media Files Ad Insertion
e Optimization
Aeal-Time Data Compliance &
#Live #Stocks Goverance Widleo ‘oin-tiemigin

The Overall CDN Diagram explains:

Edge servers are located closer to the end user than traditional servers, which helps reduce
latency and improve website performance.

https://blog.devgenius.io/a-beginners-guide-to-cdn-what-it-is-and-how-it-works-f06946288fbb

Edge computing is a type of computing that processes data closer to the end user rather than in
a centralized data center. This helps to reduce latency and improve the performance of
applications that require real-time processing, such as video streaming or online gaming.

Cloud gaming is online gaming that uses cloud computing to provide users with high-quality,
low-latency gaming experiences.

Together, these technologies are transforming how we access and consume digital content. By
providing faster, more reliable, and more immersive experiences for users, they are helping to
drive the growth of the digital economy and create new opportunities for businesses and
consumers alike.

What are the API architectural styles?

The diagram below shows the common API architectural styles in one picture.

API Architectural Styles §) blog.bytebytego.com
&y 3
................................ . Alice =R

: Third-Party Services :

stripe (DResT (@)GraphaL () Web Socket

| luser/123

{ user(id:123): "Bob" {
renans name
 forder/321 | gender
e order{
price
quantity
11}

. PayPal

@ Webhook

\

[REST API Gateway] [Web Socket Gaieway}
A
Webhook
Handler
APl Gateways

® (—— —®
RPC- Order Service [—gRPC-| Payment Service
—

AP
/SO

£ A

Legacy Ledger
_—

Services

1. REST

Proposed in 2000, REST is the most used style. It is often used between front-end clients
and back-end services. It is compliant with 6 architectural constraints. The payload

format can be JSON, XML, HTML, or plain text.

2. GraphQL

GraphQL was proposed in 2015 by Meta. It provides a schema and type system, suitable
for complex systems where the relationships between entities are graph-like. For
example, in the diagram below, GraphQL can retrieve user and order information in one
call, while in REST this needs multiple calls.

GraphQL is not a replacement for REST. It can be built upon existing REST services.

Web socket

Web socket is a protocol that provides full-duplex communications over TCP. The clients
establish web sockets to receive real-time updates from the back-end services. Unlike
REST, which always “pulls” data, web socket enables data to be “pushed”.

Webhook

Webhooks are usually used by third-party asynchronous API calls. In the diagram below,
for example, we use Stripe or Paypal for payment channels and register a webhook for
payment results. When a third-party payment service is done, it notifies the payment
service if the payment is successful or failed. Webhook calls are usually part of the
system’s state machine.

gRPC
Released in 2016, gRPC is used for communications among microservices. gRPC library
handles encoding/decoding and data transmission.

SOAP
SOAP stands for Simple Object Access Protocol. Its payload is XML only, suitable for
communications between internal systems.

Over to you: What API architectural styles have you used?

Cloud-native vs. Cloud computing

The term "Cloud Native" seemed to first appear around 10 years ago when Netflix discussed
their web-scale application architecture at a 2013 AWS re:Invent talk.

| What is Cloud Native?

£ blog.bytebytego.com

l!l!
|i|}|
il
B
4
LY
Bl
LY

Development
Process Waterfall Agile

-
|

&
S

Application
Architecture Monoelithic N-Tier Microservices
Container Container
App M" App App
% Bins/ Bins/
Guest Guest e e
App os 0s Container Engine
[iBskat ownrwr | yovel S
 Physical Server
Deployment
& Packaging Physical server Virtual server Container

8| BB S

Reference: https:/iwww.oracle.com/cloud/cloud-
native/what-is-cloud-native/

At that time, the meaning of the term was likely different than it is today. However, one thing
remains the same: there were no clear definitions for it then, and there still are not any clear
definitions now. It means different things to different people.

In this video, we provide our interpretation of the term "Cloud Native" and discuss when it is
important.

Watch and subscribe here: https://Inkd.in/evAgzU9V

https://lnkd.in/evAqzU9V

C, C++, Java, Javascript, Typescript, Golang, Rust...

How do programming languages evolve for the past 70 years?

The diagram below shows a brief history of programming languages.

C, C++, Java, Javascript, Typescript, Golang, Rust
- A Brief History of Programming Languages

f) blog bytebytego.com

(1946- 1950 | [perforated caras |
[1950 - 1960 H Assembly language]
[1957 - now]%dumd Iunguagu]
Fortran
bz LLiP
19608 Basic j
Smalltalk
abject-oriented
Object C
—_— | ABC
|
VB Python
object-C without C
Swift

IBM ALGO&U—‘
Simula6? — CcPL |
IBM ALGOS8 ngl_ i
Pascal B | I
unix programming |
Modula t | |
c |
mmémm
—— G | ;
Perl .
Modula3 1 ¥ o — I
l Java PHP |
Ruby 1 |
backend |

C# venlazemani Javascript

fromend
replacement
L D
G
qleng flutter usage
safe J
|—* Rust

Kotiin Dart

Typescript
~———= Carbon |

Source: Tecent Engineering

e Perforated cards were the first generation of programming languages. Assembly
languages, which are machine-oriented, are the second generation of programming
languages. Third-generation languages, which are human-oriented, have been around
since 1957.

e Early languages like Fortran and LISP proposed garbage collection, recursion, exceptions.
These features still exist in modern programming languages.

e 1In 1972, two influential languages were born: Smalltalk and C. Smalltalk greatly
influenced scripting languages and client-side languages. C language was developed for
unix programming.

e Inthe 1980s, object-oriented languages became popular because of its advantage in
graphic user interfaces. Object-C and C++ are two famous ones.

® Inthe 1990s, the PCs became cheaper. The programming languages at this stage
emphasized security and simplicity. Python was born in this decade. It was easy to learn
and extend and it quickly gained popularity. In 1995, Java, Javascript, PHP and Ruby were
born.

e |n 2000, C# was released by Microsoft. Although it was bundled with .NET framework,
this language carried a lot of advanced features.

® A number of languages were developed in the 2010s to improve C++ or Java. In the C++
family, we have D, Rust, Zig and most recently Carbon. In the Java family, we have Golang
and Kotlin. The use of Flutter made Dart popular, and Typescript was developed to be
fully compatible with Javascript. Also, Apple finally released Swift to replace Object-C.

Over to you: What'’s your favorite language and why? Will Al change the way we use
programming languages?

The Linux Storage Stack Diagram shows the layout of the the Linux
storage stack

Diagram by Thomas-Krenn

The Linux Storage Stack Diagram (Linux Kernel 6.2)

(version 6.2 1023-02-22, outlines the Linux storage stack as of Linux Kemel version 6.1 and 6.2)

EE_ |- 3 3
& L.
i ﬂ i g8
Lo
, H
it
I targel_core_mad] e
h
farget_core block] 4
target_core_rd B i v (ONT]
memory], userspace, :
R] 3 = ™ BIOs (block LDs) =
{optional) Devices on iop of “nomal” biock devices
[device mapper (dm) | [Cema |
§ (amcacha]| (amcone | (amnye) (omets| [amar | (amvivegry) | § (am-deey | (amaust] | (ma oAD) |
gtﬁﬂ v [smen] s o] E =
{dmtvin | [dm-unstripe] |dm-verity | | dm. | {dm-zoned| [dm-zera)
L -

[Pcie e |
% (s menon

The Linux Storage Stack Diagram
ko . Linux_Storage_Stack_Diagram
Design Wemer Fischer, support by Christoph Helwig, Richard Wesnberger et al.

Licanae: CC-BY-SA 3.0, ses hitp/crealivecommons. ong/heansss.by-aa/3 0

Breaking down what's going on with the Silicon Valley Bank (SVB)
collapse

| Explanation of Silicon Valley Bank (SVB) Run £ ByteByteGo

- 5t more
SVE =0id mol 2

